M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens

Detalhes bibliográficos
Autor(a) principal: Maciel, Noberto Pires
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UEFS
Texto Completo: http://tede2.uefs.br:8080/handle/tede/1847
Resumo: Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work.
id UEFS_0732fa9152c3fd62ca199f2e2db92aa1
oai_identifier_str oai:tede2.uefs.br:8080:tede/1847
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Calumby, Rodrigo Tripodihttps://orcid.org/0000-0001-8515-265Xhttp://lattes.cnpq.br/33037134735655433326886762871876http://lattes.cnpq.br/3326886762871876Maciel, Noberto Pires2025-06-16T18:14:22Z2024-06-11MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1847Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work.A busca de imagens por conte?do em uma cole??o de dados, seja atrav?s de mecanismos de m?dia social ou em ferramentas de busca livre na web, ? uma tarefa complexa onde resultados baseados apenas em similaridade frequentemente apresentam problemas de relev?ncia como itens pouco representativos e quase-duplicatas. Comumente, ferramentas de busca tentam realizar uma ampla cobertura baseada em subt?picos impl?citos da consulta para atender ao usu?rio de forma mais completa poss?vel. Neste sentido, a abordagem baseada em diversifica??o de conte?do utilizando algoritmos de agrupamento de dados tem sido bastante utilizada. Nesta abordagem, cada grupo identificado pelo algoritmo nos resultados da busca ? tratado como um subt?pico. Estes grupos s?o utilizados para extrair imagens representativas que juntas tragam diversidade ao resultado apresentado ao usu?rio. Contudo, a efic?cia da abordagem depende da escolha de um bom esquema de agrupamento, algo que est? diretamente ligado ao n?mero de grupos gerados pelo algoritmo, tarefa que tem sido um imenso desafio. Este trabalho tem como objetivo avaliar os poss?veis ganhos em termos de efic?cia na tarefa de recupera??o de imagens diversificadas, atrav?s da sele??o dos melhores esquemas de grupos gerados por algoritmos de agrupamento, buscando dinamicamente um n?mero de grupos ideal para cada consulta. Adicionalmente, pretende-se estender a literatura realizando a avalia??o experimental do m?todo DTRS para estimativa da qualidade dos agrupamentos, bem como desenvolver um m?todo auxiliar eficiente para determina??o de crit?rio de parada para algoritmos de agrupamento e, consequentemente, reduzir os custos computacionais do procedimento de diversifica??o de resultados. Para isso, conduzimos experimentos utilizando os algoritmos K-Medoids e Hier?rquico Aglomerativo, empregando diferentes m?todos de valida??o, explorando varia??es na quantidade de agrupamentos e adotando diferentes abordagens auxiliares para sele??o dos melhores esquemas de clusters, como o m?todo Elbow. Os resultados demonstraram ganhos em termos de efic?cia na recupera??o de imagens diversificadas e significativa redu??o do tempo de execu??o do sistema CBIR empregado neste trabalho.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-06-16T18:14:22Z No. of bitstreams: 1 Noberto Pires Maciel - Dissertacao.pdf: 22407654 bytes, checksum: a9e6b4761b45e64a8a475ec9a10fe104 (MD5)Made available in DSpace on 2025-06-16T18:14:22Z (GMT). No. of bitstreams: 1 Noberto Pires Maciel - Dissertacao.pdf: 22407654 bytes, checksum: a9e6b4761b45e64a8a475ec9a10fe104 (MD5) Previous issue date: 2024-06-11application/pdfhttp://tede2.uefs.br:8080/retrieve/7850/Noberto%20Pires%20Maciel%20%20-%20Dissertacao.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASClusteriza??oCbirDtrsDiversifica??oClusteringCbirDtrsDiversityCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOM?todos de descoberta adaptativa de subconsultas para busca diversificada de imagensinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-4570527706994352458600600600-54868328166115062113671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILNoberto Pires Maciel - Dissertacao.pdf.jpgNoberto Pires Maciel - Dissertacao.pdf.jpgimage/jpeg3224http://tede2.uefs.br:8080/bitstream/tede/1847/4/Noberto+Pires+Maciel++-+Dissertacao.pdf.jpg9a5c92346202c8ea0b9ea7059393931eMD54TEXTNoberto Pires Maciel - Dissertacao.pdf.txtNoberto Pires Maciel - Dissertacao.pdf.txttext/plain355074http://tede2.uefs.br:8080/bitstream/tede/1847/3/Noberto+Pires+Maciel++-+Dissertacao.pdf.txta27fb14d9cd68cab309c5007b479d8beMD53ORIGINALNoberto Pires Maciel - Dissertacao.pdfNoberto Pires Maciel - Dissertacao.pdfapplication/pdf22407654http://tede2.uefs.br:8080/bitstream/tede/1847/2/Noberto+Pires+Maciel++-+Dissertacao.pdfa9e6b4761b45e64a8a475ec9a10fe104MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1847/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/18472025-09-10 01:44:09.88oai:tede2.uefs.br:8080:tede/1847Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:44:09Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
title M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
spellingShingle M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
Maciel, Noberto Pires
Clusteriza??o
Cbir
Dtrs
Diversifica??o
Clustering
Cbir
Dtrs
Diversity
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
title_full M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
title_fullStr M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
title_full_unstemmed M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
title_sort M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
author Maciel, Noberto Pires
author_facet Maciel, Noberto Pires
author_role author
dc.contributor.advisor1.fl_str_mv Calumby, Rodrigo Tripodi
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0001-8515-265X
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3303713473565543
dc.contributor.authorID.fl_str_mv 3326886762871876
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3326886762871876
dc.contributor.author.fl_str_mv Maciel, Noberto Pires
contributor_str_mv Calumby, Rodrigo Tripodi
dc.subject.por.fl_str_mv Clusteriza??o
Cbir
Dtrs
Diversifica??o
topic Clusteriza??o
Cbir
Dtrs
Diversifica??o
Clustering
Cbir
Dtrs
Diversity
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Clustering
Cbir
Dtrs
Diversity
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work.
publishDate 2024
dc.date.issued.fl_str_mv 2024-06-11
dc.date.accessioned.fl_str_mv 2025-06-16T18:14:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1847
identifier_str_mv MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.
url http://tede2.uefs.br:8080/handle/tede/1847
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -4570527706994352458
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -5486832816611506211
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia da Computa??o
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE CI?NCIAS EXATAS
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1847/4/Noberto+Pires+Maciel++-+Dissertacao.pdf.jpg
http://tede2.uefs.br:8080/bitstream/tede/1847/3/Noberto+Pires+Maciel++-+Dissertacao.pdf.txt
http://tede2.uefs.br:8080/bitstream/tede/1847/2/Noberto+Pires+Maciel++-+Dissertacao.pdf
http://tede2.uefs.br:8080/bitstream/tede/1847/1/license.txt
bitstream.checksum.fl_str_mv 9a5c92346202c8ea0b9ea7059393931e
a27fb14d9cd68cab309c5007b479d8be
a9e6b4761b45e64a8a475ec9a10fe104
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1845618128243916800