M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | por |
| Título da fonte: | Biblioteca Digital de Teses e Dissertações da UEFS |
| Texto Completo: | http://tede2.uefs.br:8080/handle/tede/1847 |
Resumo: | Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work. |
| id |
UEFS_0732fa9152c3fd62ca199f2e2db92aa1 |
|---|---|
| oai_identifier_str |
oai:tede2.uefs.br:8080:tede/1847 |
| network_acronym_str |
UEFS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| repository_id_str |
|
| spelling |
Calumby, Rodrigo Tripodihttps://orcid.org/0000-0001-8515-265Xhttp://lattes.cnpq.br/33037134735655433326886762871876http://lattes.cnpq.br/3326886762871876Maciel, Noberto Pires2025-06-16T18:14:22Z2024-06-11MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana.http://tede2.uefs.br:8080/handle/tede/1847Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work.A busca de imagens por conte?do em uma cole??o de dados, seja atrav?s de mecanismos de m?dia social ou em ferramentas de busca livre na web, ? uma tarefa complexa onde resultados baseados apenas em similaridade frequentemente apresentam problemas de relev?ncia como itens pouco representativos e quase-duplicatas. Comumente, ferramentas de busca tentam realizar uma ampla cobertura baseada em subt?picos impl?citos da consulta para atender ao usu?rio de forma mais completa poss?vel. Neste sentido, a abordagem baseada em diversifica??o de conte?do utilizando algoritmos de agrupamento de dados tem sido bastante utilizada. Nesta abordagem, cada grupo identificado pelo algoritmo nos resultados da busca ? tratado como um subt?pico. Estes grupos s?o utilizados para extrair imagens representativas que juntas tragam diversidade ao resultado apresentado ao usu?rio. Contudo, a efic?cia da abordagem depende da escolha de um bom esquema de agrupamento, algo que est? diretamente ligado ao n?mero de grupos gerados pelo algoritmo, tarefa que tem sido um imenso desafio. Este trabalho tem como objetivo avaliar os poss?veis ganhos em termos de efic?cia na tarefa de recupera??o de imagens diversificadas, atrav?s da sele??o dos melhores esquemas de grupos gerados por algoritmos de agrupamento, buscando dinamicamente um n?mero de grupos ideal para cada consulta. Adicionalmente, pretende-se estender a literatura realizando a avalia??o experimental do m?todo DTRS para estimativa da qualidade dos agrupamentos, bem como desenvolver um m?todo auxiliar eficiente para determina??o de crit?rio de parada para algoritmos de agrupamento e, consequentemente, reduzir os custos computacionais do procedimento de diversifica??o de resultados. Para isso, conduzimos experimentos utilizando os algoritmos K-Medoids e Hier?rquico Aglomerativo, empregando diferentes m?todos de valida??o, explorando varia??es na quantidade de agrupamentos e adotando diferentes abordagens auxiliares para sele??o dos melhores esquemas de clusters, como o m?todo Elbow. Os resultados demonstraram ganhos em termos de efic?cia na recupera??o de imagens diversificadas e significativa redu??o do tempo de execu??o do sistema CBIR empregado neste trabalho.Submitted by Daniela Costa (dmscosta@uefs.br) on 2025-06-16T18:14:22Z No. of bitstreams: 1 Noberto Pires Maciel - Dissertacao.pdf: 22407654 bytes, checksum: a9e6b4761b45e64a8a475ec9a10fe104 (MD5)Made available in DSpace on 2025-06-16T18:14:22Z (GMT). No. of bitstreams: 1 Noberto Pires Maciel - Dissertacao.pdf: 22407654 bytes, checksum: a9e6b4761b45e64a8a475ec9a10fe104 (MD5) Previous issue date: 2024-06-11application/pdfhttp://tede2.uefs.br:8080/retrieve/7850/Noberto%20Pires%20Maciel%20%20-%20Dissertacao.pdf.jpgporUniversidade Estadual de Feira de SantanaPrograma de P?s-Gradua??o em Ci?ncia da Computa??oUEFSBrasilDEPARTAMENTO DE CI?NCIAS EXATASClusteriza??oCbirDtrsDiversifica??oClusteringCbirDtrsDiversityCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOM?todos de descoberta adaptativa de subconsultas para busca diversificada de imagensinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-4570527706994352458600600600-54868328166115062113671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSTHUMBNAILNoberto Pires Maciel - Dissertacao.pdf.jpgNoberto Pires Maciel - Dissertacao.pdf.jpgimage/jpeg3224http://tede2.uefs.br:8080/bitstream/tede/1847/4/Noberto+Pires+Maciel++-+Dissertacao.pdf.jpg9a5c92346202c8ea0b9ea7059393931eMD54TEXTNoberto Pires Maciel - Dissertacao.pdf.txtNoberto Pires Maciel - Dissertacao.pdf.txttext/plain355074http://tede2.uefs.br:8080/bitstream/tede/1847/3/Noberto+Pires+Maciel++-+Dissertacao.pdf.txta27fb14d9cd68cab309c5007b479d8beMD53ORIGINALNoberto Pires Maciel - Dissertacao.pdfNoberto Pires Maciel - Dissertacao.pdfapplication/pdf22407654http://tede2.uefs.br:8080/bitstream/tede/1847/2/Noberto+Pires+Maciel++-+Dissertacao.pdfa9e6b4761b45e64a8a475ec9a10fe104MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1847/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/18472025-09-10 01:44:09.88oai:tede2.uefs.br:8080:tede/1847Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2025-09-10T04:44:09Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false |
| dc.title.por.fl_str_mv |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| title |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| spellingShingle |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens Maciel, Noberto Pires Clusteriza??o Cbir Dtrs Diversifica??o Clustering Cbir Dtrs Diversity CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| title_full |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| title_fullStr |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| title_full_unstemmed |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| title_sort |
M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens |
| author |
Maciel, Noberto Pires |
| author_facet |
Maciel, Noberto Pires |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Calumby, Rodrigo Tripodi |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0001-8515-265X |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3303713473565543 |
| dc.contributor.authorID.fl_str_mv |
3326886762871876 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3326886762871876 |
| dc.contributor.author.fl_str_mv |
Maciel, Noberto Pires |
| contributor_str_mv |
Calumby, Rodrigo Tripodi |
| dc.subject.por.fl_str_mv |
Clusteriza??o Cbir Dtrs Diversifica??o |
| topic |
Clusteriza??o Cbir Dtrs Diversifica??o Clustering Cbir Dtrs Diversity CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Clustering Cbir Dtrs Diversity |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Searching images for content in a data collection, whether through social media mechanisms or free web search tools, is a complex task where results based on similarity alone often present relevance problems such as unrepresentative items and near-duplicates. Commonly, search engines try to perform a broad coverage based on implicit subtopics of the query in order to serve the user as completely as possible. In this sense, the approach based on content diversification using data clustering algorithms has been widely used. In this approach, each group identified by the algorithm in the search results is treated as a subtopic. These groups are used to extract representative images that together bring diversity to the result presented to the user. However, the effectiveness of the approach depends on choosing a good clustering scheme, something that is directly linked to the number of groups generated by the algorithm, a task that has been an immense challenge. This work aims to evaluate the possible gains in terms of efficiency in the task of retrieving diverse images by selecting the best grouping schemes generated by clustering algorithms, dynamically searching for the ideal number of groups for each query. In addition, we intend to extend the literature by carrying out an experimental evaluation of the DTRS method for estimating the quality of clusters, as well as developing an efficient auxiliary method for determining the stopping criteria for clustering algorithms and, consequently, reducing the computational costs of the results diversification procedure. To this end, we conducted experiments using the K-Medoids and Hierarchical Agglomerative algorithms, employing different validation methods, exploring variations in the number of clusters and adopting different auxiliary approaches for selecting the best clusters schemes, such as the Elbow?s method. The results showed gains in terms of efficiency in retrieving diverse images and a significant reduction in the running time of the CBIR system used in this work. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-06-11 |
| dc.date.accessioned.fl_str_mv |
2025-06-16T18:14:22Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana. |
| dc.identifier.uri.fl_str_mv |
http://tede2.uefs.br:8080/handle/tede/1847 |
| identifier_str_mv |
MACIEL, Noberto Pires. M?todos de descoberta adaptativa de subconsultas para busca diversificada de imagens, 2024, 160 f., Disserta??o (mestrado) - Programa de P?s-Gradua??o em Ci?ncia da Computa??o, Universidade Estadual de Feira de Santana, Feira de Santana. |
| url |
http://tede2.uefs.br:8080/handle/tede/1847 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
-4570527706994352458 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.department.fl_str_mv |
-5486832816611506211 |
| dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.publisher.program.fl_str_mv |
Programa de P?s-Gradua??o em Ci?ncia da Computa??o |
| dc.publisher.initials.fl_str_mv |
UEFS |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE CI?NCIAS EXATAS |
| publisher.none.fl_str_mv |
Universidade Estadual de Feira de Santana |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UEFS instname:Universidade Estadual de Feira de Santana (UEFS) instacron:UEFS |
| instname_str |
Universidade Estadual de Feira de Santana (UEFS) |
| instacron_str |
UEFS |
| institution |
UEFS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UEFS |
| collection |
Biblioteca Digital de Teses e Dissertações da UEFS |
| bitstream.url.fl_str_mv |
http://tede2.uefs.br:8080/bitstream/tede/1847/4/Noberto+Pires+Maciel++-+Dissertacao.pdf.jpg http://tede2.uefs.br:8080/bitstream/tede/1847/3/Noberto+Pires+Maciel++-+Dissertacao.pdf.txt http://tede2.uefs.br:8080/bitstream/tede/1847/2/Noberto+Pires+Maciel++-+Dissertacao.pdf http://tede2.uefs.br:8080/bitstream/tede/1847/1/license.txt |
| bitstream.checksum.fl_str_mv |
9a5c92346202c8ea0b9ea7059393931e a27fb14d9cd68cab309c5007b479d8be a9e6b4761b45e64a8a475ec9a10fe104 7b5ba3d2445355f386edab96125d42b7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS) |
| repository.mail.fl_str_mv |
bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br |
| _version_ |
1845618128243916800 |