Naimark-Sacker bifurcations in a delay quartic map
Main Author: | |
---|---|
Publication Date: | 2008 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000qn3j |
Download full: | https://repositorio.udesc.br/handle/UDESC/10174 |
Summary: | In this paper, we consider a two-dimensional map in which one of the fixed points is destabilized via a supercritical Naimark-Sacker bifurcation. We investigate, via numerical simulations, phenomena associated with the appearance, in the phase-space, of closed invariant curves involved in the Naimark-Sacker bifurcation. Lyapunov exponents, parameter-space and phase-space diagrams are used to show that the transition from quasiperiodic to chaotic states generally do not happen in this case. We determine numerically the location of the parameter sets where the Naimark-Sacker bifurcation occurs. © 2006 Elsevier Ltd. All rights reserved. |
id |
UDESC-2_e3cc000d5870ffdafb8ea692748f6a8b |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/10174 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Naimark-Sacker bifurcations in a delay quartic mapIn this paper, we consider a two-dimensional map in which one of the fixed points is destabilized via a supercritical Naimark-Sacker bifurcation. We investigate, via numerical simulations, phenomena associated with the appearance, in the phase-space, of closed invariant curves involved in the Naimark-Sacker bifurcation. Lyapunov exponents, parameter-space and phase-space diagrams are used to show that the transition from quasiperiodic to chaotic states generally do not happen in this case. We determine numerically the location of the parameter sets where the Naimark-Sacker bifurcation occurs. © 2006 Elsevier Ltd. All rights reserved.2024-12-06T19:25:06Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 387 - 3920960-077910.1016/j.chaos.2006.08.029https://repositorio.udesc.br/handle/UDESC/10174ark:/33523/001300000qn3jChaos, Solitons and Fractals372Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:07:14Zoai:repositorio.udesc.br:UDESC/10174Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:07:14Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Naimark-Sacker bifurcations in a delay quartic map |
title |
Naimark-Sacker bifurcations in a delay quartic map |
spellingShingle |
Naimark-Sacker bifurcations in a delay quartic map Rech P.C.* |
title_short |
Naimark-Sacker bifurcations in a delay quartic map |
title_full |
Naimark-Sacker bifurcations in a delay quartic map |
title_fullStr |
Naimark-Sacker bifurcations in a delay quartic map |
title_full_unstemmed |
Naimark-Sacker bifurcations in a delay quartic map |
title_sort |
Naimark-Sacker bifurcations in a delay quartic map |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
In this paper, we consider a two-dimensional map in which one of the fixed points is destabilized via a supercritical Naimark-Sacker bifurcation. We investigate, via numerical simulations, phenomena associated with the appearance, in the phase-space, of closed invariant curves involved in the Naimark-Sacker bifurcation. Lyapunov exponents, parameter-space and phase-space diagrams are used to show that the transition from quasiperiodic to chaotic states generally do not happen in this case. We determine numerically the location of the parameter sets where the Naimark-Sacker bifurcation occurs. © 2006 Elsevier Ltd. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2024-12-06T19:25:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0960-0779 10.1016/j.chaos.2006.08.029 https://repositorio.udesc.br/handle/UDESC/10174 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000qn3j |
identifier_str_mv |
0960-0779 10.1016/j.chaos.2006.08.029 ark:/33523/001300000qn3j |
url |
https://repositorio.udesc.br/handle/UDESC/10174 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaos, Solitons and Fractals 37 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 387 - 392 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258161438818304 |