Period-adding and spiral organization of the periodicity in a Hopfield neural network
Main Author: | |
---|---|
Publication Date: | 2015 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000003m31 |
Download full: | https://repositorio.udesc.br/handle/UDESC/8113 |
Summary: | © 2013, Springer-Verlag Berlin Heidelberg.This work reports two-dimensional parameter space plots, concerned with a three-dimensional Hopfield-type neural network with a hyperbolic tangent as the activation function. It shows that typical periodic structures embedded in a chaotic region, called shrimps, organize themselves in two independent ways: (i) as spirals that individually coil up toward a focal point while undergo period-adding bifurcations and, (ii) as a sequence with a well-defined law of formation, constituted by two different period-adding sequences inserted between. |
id |
UDESC-2_94a5773e0ca664d7c055614610c0aed4 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/8113 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Period-adding and spiral organization of the periodicity in a Hopfield neural network© 2013, Springer-Verlag Berlin Heidelberg.This work reports two-dimensional parameter space plots, concerned with a three-dimensional Hopfield-type neural network with a hyperbolic tangent as the activation function. It shows that typical periodic structures embedded in a chaotic region, called shrimps, organize themselves in two independent ways: (i) as spirals that individually coil up toward a focal point while undergo period-adding bifurcations and, (ii) as a sequence with a well-defined law of formation, constituted by two different period-adding sequences inserted between.2024-12-06T13:58:52Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1 - 61868-808X10.1007/s13042-013-0222-0https://repositorio.udesc.br/handle/UDESC/8113ark:/33523/0013000003m31International Journal of Machine Learning and Cybernetics61Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:56:27Zoai:repositorio.udesc.br:UDESC/8113Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:56:27Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
title |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
spellingShingle |
Period-adding and spiral organization of the periodicity in a Hopfield neural network Rech P.C.* |
title_short |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
title_full |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
title_fullStr |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
title_full_unstemmed |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
title_sort |
Period-adding and spiral organization of the periodicity in a Hopfield neural network |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
© 2013, Springer-Verlag Berlin Heidelberg.This work reports two-dimensional parameter space plots, concerned with a three-dimensional Hopfield-type neural network with a hyperbolic tangent as the activation function. It shows that typical periodic structures embedded in a chaotic region, called shrimps, organize themselves in two independent ways: (i) as spirals that individually coil up toward a focal point while undergo period-adding bifurcations and, (ii) as a sequence with a well-defined law of formation, constituted by two different period-adding sequences inserted between. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2024-12-06T13:58:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1868-808X 10.1007/s13042-013-0222-0 https://repositorio.udesc.br/handle/UDESC/8113 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000003m31 |
identifier_str_mv |
1868-808X 10.1007/s13042-013-0222-0 ark:/33523/0013000003m31 |
url |
https://repositorio.udesc.br/handle/UDESC/8113 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Machine Learning and Cybernetics 6 1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 1 - 6 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258082553397248 |