Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement

Bibliographic Details
Main Author: Negri L.*
Publication Date: 2011
Other Authors: Kalinowski H., Nied, Ademir, Paterno, Aleksander Sade
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/00130000023kc
Download full: https://repositorio.udesc.br/handle/UDESC/9546
Summary: This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
id UDESC-2_83620e50d605e9e33c2c9e5544acce95
oai_identifier_str oai:repositorio.udesc.br:UDESC/9546
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvementThis paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland.2024-12-06T19:13:29Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 3466 - 34821424-822010.3390/s110403466https://repositorio.udesc.br/handle/UDESC/9546ark:/33523/00130000023kcSensors114Negri L.*Kalinowski H.Nied, AdemirPaterno, Aleksander Sadeengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:03:32Zoai:repositorio.udesc.br:UDESC/9546Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:03:32Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
title Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
spellingShingle Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
Negri L.*
title_short Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
title_full Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
title_fullStr Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
title_full_unstemmed Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
title_sort Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
author Negri L.*
author_facet Negri L.*
Kalinowski H.
Nied, Ademir
Paterno, Aleksander Sade
author_role author
author2 Kalinowski H.
Nied, Ademir
Paterno, Aleksander Sade
author2_role author
author
author
dc.contributor.author.fl_str_mv Negri L.*
Kalinowski H.
Nied, Ademir
Paterno, Aleksander Sade
description This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
publishDate 2011
dc.date.none.fl_str_mv 2011
2024-12-06T19:13:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1424-8220
10.3390/s110403466
https://repositorio.udesc.br/handle/UDESC/9546
dc.identifier.dark.fl_str_mv ark:/33523/00130000023kc
identifier_str_mv 1424-8220
10.3390/s110403466
ark:/33523/00130000023kc
url https://repositorio.udesc.br/handle/UDESC/9546
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sensors
11
4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 3466 - 3482
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258076785180672