Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/00130000023kc |
Download full: | https://repositorio.udesc.br/handle/UDESC/9546 |
Summary: | This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland. |
id |
UDESC-2_83620e50d605e9e33c2c9e5544acce95 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/9546 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvementThis paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland.2024-12-06T19:13:29Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 3466 - 34821424-822010.3390/s110403466https://repositorio.udesc.br/handle/UDESC/9546ark:/33523/00130000023kcSensors114Negri L.*Kalinowski H.Nied, AdemirPaterno, Aleksander Sadeengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:03:32Zoai:repositorio.udesc.br:UDESC/9546Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:03:32Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
title |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
spellingShingle |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement Negri L.* |
title_short |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
title_full |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
title_fullStr |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
title_full_unstemmed |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
title_sort |
Benchmark for peak detection algorithms in fiber Bragg grating interrogation and a new neural network for its performance improvement |
author |
Negri L.* |
author_facet |
Negri L.* Kalinowski H. Nied, Ademir Paterno, Aleksander Sade |
author_role |
author |
author2 |
Kalinowski H. Nied, Ademir Paterno, Aleksander Sade |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Negri L.* Kalinowski H. Nied, Ademir Paterno, Aleksander Sade |
description |
This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. © 2011 by the authors; licensee MDPI, Basel, Switzerland. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2024-12-06T19:13:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1424-8220 10.3390/s110403466 https://repositorio.udesc.br/handle/UDESC/9546 |
dc.identifier.dark.fl_str_mv |
ark:/33523/00130000023kc |
identifier_str_mv |
1424-8220 10.3390/s110403466 ark:/33523/00130000023kc |
url |
https://repositorio.udesc.br/handle/UDESC/9546 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sensors 11 4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 3466 - 3482 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258076785180672 |