Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista
| Main Author: | |
|---|---|
| Publication Date: | 2016 |
| Other Authors: | , , , , |
| Language: | eng |
| Source: | Repositório Institucional da Udesc |
| dARK ID: | ark:/33523/0013000003wjs |
| Download full: | https://repositorio.udesc.br/handle/UDESC/10777 |
Summary: | This study aimed to evaluate open source softwares in order to classify secondary successional forest stages in Shade Tolerant Mixed Forest (FOM) environments in Southern Brazil. Two test sites were selected in the mountainous region of Santa Catarina State. We used scenes from the airborne system for acquisition and post-processing of images (SAAPI) with a spatial resolution of 0.39m. The dataset consists of orthorectified images containing three spectral bands in the visible range (i.e. 0.38-0.70pm), three spectral bands in the near infrared (i.e. 0.76- 0.78pm) and a digital surface model. The methodologies were developed using feature selection and decision tree algorithms in the following open source softwares: InterlMAGE, WEKA and QGIS. The results were satisfactory to classify successional stages of FOM as well as other classes of land use and land corer. The obtained Kappa indices ranged from 0.53 to 0.59 and the conditional Kappa varied from 0.29 to 0.83 for the successional forest stages. These results demonstrate the potential of these approaches for the extraction of information in high spatial resolution imagery as well as the possibility of providing subsidies for the implementation of public policies and monitoring of forest resources. |
| id |
UDESC-2_78bef46c41621aa10a3be0735cc24b11 |
|---|---|
| oai_identifier_str |
oai:repositorio.udesc.br:UDESC/10777 |
| network_acronym_str |
UDESC-2 |
| network_name_str |
Repositório Institucional da Udesc |
| repository_id_str |
6391 |
| spelling |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mistaThis study aimed to evaluate open source softwares in order to classify secondary successional forest stages in Shade Tolerant Mixed Forest (FOM) environments in Southern Brazil. Two test sites were selected in the mountainous region of Santa Catarina State. We used scenes from the airborne system for acquisition and post-processing of images (SAAPI) with a spatial resolution of 0.39m. The dataset consists of orthorectified images containing three spectral bands in the visible range (i.e. 0.38-0.70pm), three spectral bands in the near infrared (i.e. 0.76- 0.78pm) and a digital surface model. The methodologies were developed using feature selection and decision tree algorithms in the following open source softwares: InterlMAGE, WEKA and QGIS. The results were satisfactory to classify successional stages of FOM as well as other classes of land use and land corer. The obtained Kappa indices ranged from 0.53 to 0.59 and the conditional Kappa varied from 0.29 to 0.83 for the successional forest stages. These results demonstrate the potential of these approaches for the extraction of information in high spatial resolution imagery as well as the possibility of providing subsidies for the implementation of public policies and monitoring of forest resources.2024-12-07T20:07:17Z2016Artigo de revisãoinfo:eu-repo/semantics/publishedVersion1413-9324https://repositorio.udesc.br/handle/UDESC/10777ark:/33523/0013000003wjsScientia Forestalis/Forest Sciences44112Sothe C.*De Almeida C.M.Schimalski, Marcos BeneditoDe Souza C.F.*Liesenberg, VeraldoDe Souza J.B.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:53:57Zoai:repositorio.udesc.br:UDESC/10777Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:53:57Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
| dc.title.none.fl_str_mv |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| title |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| spellingShingle |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista Sothe C.* |
| title_short |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| title_full |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| title_fullStr |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| title_full_unstemmed |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| title_sort |
Applying data mining techniques to the classification of successions forest stages mixed shade tolerant forest environments Técnicas de mineração de dados aplicadas à classificação do estádio sucessional da vegetação em áreas de floresta ombrófila mista |
| author |
Sothe C.* |
| author_facet |
Sothe C.* De Almeida C.M. Schimalski, Marcos Benedito De Souza C.F.* Liesenberg, Veraldo De Souza J.B.* |
| author_role |
author |
| author2 |
De Almeida C.M. Schimalski, Marcos Benedito De Souza C.F.* Liesenberg, Veraldo De Souza J.B.* |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Sothe C.* De Almeida C.M. Schimalski, Marcos Benedito De Souza C.F.* Liesenberg, Veraldo De Souza J.B.* |
| description |
This study aimed to evaluate open source softwares in order to classify secondary successional forest stages in Shade Tolerant Mixed Forest (FOM) environments in Southern Brazil. Two test sites were selected in the mountainous region of Santa Catarina State. We used scenes from the airborne system for acquisition and post-processing of images (SAAPI) with a spatial resolution of 0.39m. The dataset consists of orthorectified images containing three spectral bands in the visible range (i.e. 0.38-0.70pm), three spectral bands in the near infrared (i.e. 0.76- 0.78pm) and a digital surface model. The methodologies were developed using feature selection and decision tree algorithms in the following open source softwares: InterlMAGE, WEKA and QGIS. The results were satisfactory to classify successional stages of FOM as well as other classes of land use and land corer. The obtained Kappa indices ranged from 0.53 to 0.59 and the conditional Kappa varied from 0.29 to 0.83 for the successional forest stages. These results demonstrate the potential of these approaches for the extraction of information in high spatial resolution imagery as well as the possibility of providing subsidies for the implementation of public policies and monitoring of forest resources. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016 2024-12-07T20:07:17Z |
| dc.type.driver.fl_str_mv |
Artigo de revisão |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
1413-9324 https://repositorio.udesc.br/handle/UDESC/10777 |
| dc.identifier.dark.fl_str_mv |
ark:/33523/0013000003wjs |
| identifier_str_mv |
1413-9324 ark:/33523/0013000003wjs |
| url |
https://repositorio.udesc.br/handle/UDESC/10777 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Scientia Forestalis/Forest Sciences 44 112 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
| instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
| instacron_str |
UDESC |
| institution |
UDESC |
| reponame_str |
Repositório Institucional da Udesc |
| collection |
Repositório Institucional da Udesc |
| repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
| repository.mail.fl_str_mv |
ri@udesc.br |
| _version_ |
1848168327593066496 |