Chaos and hyperchaos in a Hopfield neural network
Main Author: | |
---|---|
Publication Date: | 2011 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000qqm1 |
Download full: | https://repositorio.udesc.br/handle/UDESC/9474 |
Summary: | In this paper we investigate numerically the parameter-space of an autonomous system of four nonlinear first-order ordinary differential equations, which represents a Hopfield neural network with four neurons. The study considers three independent two-dimensional cross-sections of the three-dimensional parameter-space generated by this mathematical model, every constructed considering Lyapunov exponent values. We show that is possible to completely characterize the dynamics of the system based in these three plots, which are representative of the three-dimensional parameter-space as a whole. © 2011 Elsevier B.V. |
id |
UDESC-2_6dba593ef1e96804981e17aecbea3031 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/9474 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Chaos and hyperchaos in a Hopfield neural networkIn this paper we investigate numerically the parameter-space of an autonomous system of four nonlinear first-order ordinary differential equations, which represents a Hopfield neural network with four neurons. The study considers three independent two-dimensional cross-sections of the three-dimensional parameter-space generated by this mathematical model, every constructed considering Lyapunov exponent values. We show that is possible to completely characterize the dynamics of the system based in these three plots, which are representative of the three-dimensional parameter-space as a whole. © 2011 Elsevier B.V.2024-12-06T19:12:06Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 3361 - 33641872-828610.1016/j.neucom.2011.05.016https://repositorio.udesc.br/handle/UDESC/9474ark:/33523/001300000qqm1Neurocomputing7417Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:03:04Zoai:repositorio.udesc.br:UDESC/9474Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:03:04Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Chaos and hyperchaos in a Hopfield neural network |
title |
Chaos and hyperchaos in a Hopfield neural network |
spellingShingle |
Chaos and hyperchaos in a Hopfield neural network Rech P.C.* |
title_short |
Chaos and hyperchaos in a Hopfield neural network |
title_full |
Chaos and hyperchaos in a Hopfield neural network |
title_fullStr |
Chaos and hyperchaos in a Hopfield neural network |
title_full_unstemmed |
Chaos and hyperchaos in a Hopfield neural network |
title_sort |
Chaos and hyperchaos in a Hopfield neural network |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
In this paper we investigate numerically the parameter-space of an autonomous system of four nonlinear first-order ordinary differential equations, which represents a Hopfield neural network with four neurons. The study considers three independent two-dimensional cross-sections of the three-dimensional parameter-space generated by this mathematical model, every constructed considering Lyapunov exponent values. We show that is possible to completely characterize the dynamics of the system based in these three plots, which are representative of the three-dimensional parameter-space as a whole. © 2011 Elsevier B.V. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2024-12-06T19:12:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1872-8286 10.1016/j.neucom.2011.05.016 https://repositorio.udesc.br/handle/UDESC/9474 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000qqm1 |
identifier_str_mv |
1872-8286 10.1016/j.neucom.2011.05.016 ark:/33523/001300000qqm1 |
url |
https://repositorio.udesc.br/handle/UDESC/9474 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Neurocomputing 74 17 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 3361 - 3364 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258161576181760 |