Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000009c5g |
Texto Completo: | https://repositorio.udesc.br/handle/UDESC/5721 |
Resumo: | © 2019 Assoc. Brasiliera de Eng. Quimica / Braz. Soc. Chem. Eng.. All rights reserved.- Identification of stagnant regions of viscoplastic fluid flows in production lines and equipment is of paramount importance owing to potential material degradation and process contamination. The present work introduces an assessment strategy to identify, classify and quantify unyielded regions with the objective of optimizing the flow conditions with the purpose of minimizing stagnant regions. Flow of Carbopol® 980 in a T-bifurcation channel is adopted to illustrate the procedure. The rheological behavior of Carbopol® 980 was simulated using the Herschel-Bulkley viscoplastic model regularized by Papanastasiou’s exponential approach. The analysis shows that three distinct types of stagnant unyielded regions take place in the bifurcation channel depending upon the Reynolds condition. Furthermore, the rheological characteristics of the fluid indicate the existence of an ideal Reynolds condition which allows the smallest flow stagnant area at the bifurcation zone. |
id |
UDESC-2_553bd7525863df5988e6639105ec772c |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/5721 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions© 2019 Assoc. Brasiliera de Eng. Quimica / Braz. Soc. Chem. Eng.. All rights reserved.- Identification of stagnant regions of viscoplastic fluid flows in production lines and equipment is of paramount importance owing to potential material degradation and process contamination. The present work introduces an assessment strategy to identify, classify and quantify unyielded regions with the objective of optimizing the flow conditions with the purpose of minimizing stagnant regions. Flow of Carbopol® 980 in a T-bifurcation channel is adopted to illustrate the procedure. The rheological behavior of Carbopol® 980 was simulated using the Herschel-Bulkley viscoplastic model regularized by Papanastasiou’s exponential approach. The analysis shows that three distinct types of stagnant unyielded regions take place in the bifurcation channel depending upon the Reynolds condition. Furthermore, the rheological characteristics of the fluid indicate the existence of an ideal Reynolds condition which allows the smallest flow stagnant area at the bifurcation zone.2024-12-06T12:39:49Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1279 - 12870104-663210.1590/0104-6632.20190363s20180361https://repositorio.udesc.br/handle/UDESC/5721ark:/33523/0013000009c5gBrazilian Journal of Chemical Engineering363Inacio G.R.*Tomio J.C.Vaz M.*Zdanski, Paulo Sergio Bervingengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:48:36Zoai:repositorio.udesc.br:UDESC/5721Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:48:36Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
title |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
spellingShingle |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions Inacio G.R.* |
title_short |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
title_full |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
title_fullStr |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
title_full_unstemmed |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
title_sort |
Numerical study of viscoplastic flow in a T-bifurcation: Identification of stagnant regions |
author |
Inacio G.R.* |
author_facet |
Inacio G.R.* Tomio J.C. Vaz M.* Zdanski, Paulo Sergio Berving |
author_role |
author |
author2 |
Tomio J.C. Vaz M.* Zdanski, Paulo Sergio Berving |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Inacio G.R.* Tomio J.C. Vaz M.* Zdanski, Paulo Sergio Berving |
description |
© 2019 Assoc. Brasiliera de Eng. Quimica / Braz. Soc. Chem. Eng.. All rights reserved.- Identification of stagnant regions of viscoplastic fluid flows in production lines and equipment is of paramount importance owing to potential material degradation and process contamination. The present work introduces an assessment strategy to identify, classify and quantify unyielded regions with the objective of optimizing the flow conditions with the purpose of minimizing stagnant regions. Flow of Carbopol® 980 in a T-bifurcation channel is adopted to illustrate the procedure. The rheological behavior of Carbopol® 980 was simulated using the Herschel-Bulkley viscoplastic model regularized by Papanastasiou’s exponential approach. The analysis shows that three distinct types of stagnant unyielded regions take place in the bifurcation channel depending upon the Reynolds condition. Furthermore, the rheological characteristics of the fluid indicate the existence of an ideal Reynolds condition which allows the smallest flow stagnant area at the bifurcation zone. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2024-12-06T12:39:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0104-6632 10.1590/0104-6632.20190363s20180361 https://repositorio.udesc.br/handle/UDESC/5721 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000009c5g |
identifier_str_mv |
0104-6632 10.1590/0104-6632.20190363s20180361 ark:/33523/0013000009c5g |
url |
https://repositorio.udesc.br/handle/UDESC/5721 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Chemical Engineering 36 3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 1279 - 1287 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258106522796033 |