Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors

Bibliographic Details
Main Author: Martins L.C.*
Publication Date: 2008
Other Authors: Gallas J.A.C.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000000bnm
Download full: https://repositorio.udesc.br/handle/UDESC/10151
Summary: We investigate the prevalence of multistability in the parameter space of the kicked rotor map. We report high-resolution phase diagrams showing how the density of attractors and the density of periods vary as a function of both model parameters. Our diagrams illustrate density variations that exist when moving between the familiar conservative and strongly dissipative limits of the map. We find the kicked rotor to contain multistability regions with more than 400 coexisting attractors. This fact makes the rotor a promising high-complexity local unit to investigate synchronization in networks of chaotic maps, in both regular and complex topologies. © 2008 World Scientific Publishing Company.
id UDESC-2_0d486721dc6134fb057ab0e50db8e8a9
oai_identifier_str oai:repositorio.udesc.br:UDESC/10151
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractorsWe investigate the prevalence of multistability in the parameter space of the kicked rotor map. We report high-resolution phase diagrams showing how the density of attractors and the density of periods vary as a function of both model parameters. Our diagrams illustrate density variations that exist when moving between the familiar conservative and strongly dissipative limits of the map. We find the kicked rotor to contain multistability regions with more than 400 coexisting attractors. This fact makes the rotor a promising high-complexity local unit to investigate synchronization in networks of chaotic maps, in both regular and complex topologies. © 2008 World Scientific Publishing Company.2024-12-06T19:24:40Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 1705 - 17170218-127410.1142/S0218127408021294https://repositorio.udesc.br/handle/UDESC/10151ark:/33523/0013000000bnmInternational Journal of Bifurcation and Chaos186Martins L.C.*Gallas J.A.C.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:07:09Zoai:repositorio.udesc.br:UDESC/10151Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:07:09Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
title Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
spellingShingle Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
Martins L.C.*
title_short Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
title_full Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
title_fullStr Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
title_full_unstemmed Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
title_sort Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
author Martins L.C.*
author_facet Martins L.C.*
Gallas J.A.C.
author_role author
author2 Gallas J.A.C.
author2_role author
dc.contributor.author.fl_str_mv Martins L.C.*
Gallas J.A.C.
description We investigate the prevalence of multistability in the parameter space of the kicked rotor map. We report high-resolution phase diagrams showing how the density of attractors and the density of periods vary as a function of both model parameters. Our diagrams illustrate density variations that exist when moving between the familiar conservative and strongly dissipative limits of the map. We find the kicked rotor to contain multistability regions with more than 400 coexisting attractors. This fact makes the rotor a promising high-complexity local unit to investigate synchronization in networks of chaotic maps, in both regular and complex topologies. © 2008 World Scientific Publishing Company.
publishDate 2008
dc.date.none.fl_str_mv 2008
2024-12-06T19:24:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0218-1274
10.1142/S0218127408021294
https://repositorio.udesc.br/handle/UDESC/10151
dc.identifier.dark.fl_str_mv ark:/33523/0013000000bnm
identifier_str_mv 0218-1274
10.1142/S0218127408021294
ark:/33523/0013000000bnm
url https://repositorio.udesc.br/handle/UDESC/10151
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Bifurcation and Chaos
18
6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 1705 - 1717
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258070359506944