Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence

Detalhes bibliográficos
Autor(a) principal: Oliveira, Luisa Correia Matos de
Data de Publicação: 2024
Outros Autores: Oliveira, Gabriela Correia Matos de, Oliveira, Luis Matos de, Figueiredo, Adriana Malta de, Andrade, Luis Jesuino de Oliveira
Tipo de documento: preprint
Idioma: por
Título da fonte: SciELO Preprints
Texto Completo: https://preprints.scielo.org/index.php/scielo/preprint/view/9472
Resumo: Introduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis.
id SCI-1_93a3251ca8c45595feb504f217491ca3
oai_identifier_str oai:ops.preprints.scielo.org:preprint/9472
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial IntelligenceAvaliação ultrassonográfica automatizada da tireoidite de Hashimoto usando inteligência artificialAnálise ultrassonográfica automatizada da tireoideTireoidite de Hashimotolinguagem de programação C#Automated Thyroid Ultrasound AnalysisHashimoto's ThyroiditisC# programming languageIntroduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis.Introdução: A ultrassonografia da tireoide fornece informações valiosas para distúrbios da tireoide, mas é dificultada pela sua subjetividade. A análise automatizada utilizando grandes conjuntos de dados é uma grande promessa para avaliação objetiva e triagem padronizada, classificação de nódulos tireoidianos e monitoramento de tratamento. No entanto, permanece uma lacuna significativa no desenvolvimento de aplicações para a análise automatizada da tireoidite de Hashimoto (TH) por meio de ultrassonografia. Objetivo: Desenvolver um algoritmo automatizado da análise ultrassonográfica da tireoide (AUST) utilizando a linguagem de programação C# para detectar e quantificar características ultrassonográficas associadas à TH. Materiais e Métodos: Este estudo descreve o desenvolvimento e avaliação de um algoritmo AUST utilizando programação C#. O algoritmo extrai características relevantes (textura, vascularização, ecogenicidade) de imagens de ultrassonografia pré-processadas e utiliza técnicas de aprendizado de máquina para classificá-las como “normais” ou indicativas de TH. O modelo é treinado e validado em um conjunto de dados abrangente, com desempenho avaliado por meio de métricas como precisão, sensibilidade e especificidade. As descobertas destacam o potencial deste algoritmo AUST baseado em programação C# para oferecer avaliação objetiva e padronizada para o diagnóstico de TH. Resultados: O programa pré-processa imagens (conversão em escala de cinza, normalização, etc.), segmentos da tireoide, extrai características (textura, ecogenicidade) e utiliza um modelo pré-treinado para classificação ("normal" ou "suspeita de tireoidite de Hashimoto"). Usando uma imagem de amostra, o programa pré-processou, segmentou e extraiu recursos com sucesso. A classificação prevista (“suspeita de TH”) com alta probabilidade (0,92) alinha-se ao diagnóstico pré-estabelecido, sugerindo potencial para avaliação objetiva da TH. Conclusão: O algoritmo AUST baseado em programação C# detectou e quantificou com sucesso as características da TH, mostrando o potencial da programação avançada na análise de imagens médicas.SciELO PreprintsSciELO PreprintsSciELO Preprints2024-08-01info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/947210.1590/SciELOPreprints.9472porhttps://preprints.scielo.org/index.php/scielo/preprint/view/9472/17735Copyright (c) 2024 Luisa Correia Matos de Oliveira, Gabriela Correia Matos de Oliveira, Luis Matos de Oliveira, Adriana Malta de Figueiredo, Luis Jesuino de Oliveira Andradehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira, Luisa Correia Matos deOliveira, Gabriela Correia Matos deOliveira, Luis Matos deFigueiredo, Adriana Malta deAndrade, Luis Jesuino de Oliveirareponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2024-07-20T17:24:23Zoai:ops.preprints.scielo.org:preprint/9472Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2024-07-20T17:24:23SciELO Preprints - Scientific Electronic Library Online (SCIELO)false
dc.title.none.fl_str_mv Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
Avaliação ultrassonográfica automatizada da tireoidite de Hashimoto usando inteligência artificial
title Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
spellingShingle Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
Oliveira, Luisa Correia Matos de
Análise ultrassonográfica automatizada da tireoide
Tireoidite de Hashimoto
linguagem de programação C#
Automated Thyroid Ultrasound Analysis
Hashimoto's Thyroiditis
C# programming language
title_short Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
title_full Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
title_fullStr Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
title_full_unstemmed Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
title_sort Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
author Oliveira, Luisa Correia Matos de
author_facet Oliveira, Luisa Correia Matos de
Oliveira, Gabriela Correia Matos de
Oliveira, Luis Matos de
Figueiredo, Adriana Malta de
Andrade, Luis Jesuino de Oliveira
author_role author
author2 Oliveira, Gabriela Correia Matos de
Oliveira, Luis Matos de
Figueiredo, Adriana Malta de
Andrade, Luis Jesuino de Oliveira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Oliveira, Luisa Correia Matos de
Oliveira, Gabriela Correia Matos de
Oliveira, Luis Matos de
Figueiredo, Adriana Malta de
Andrade, Luis Jesuino de Oliveira
dc.subject.por.fl_str_mv Análise ultrassonográfica automatizada da tireoide
Tireoidite de Hashimoto
linguagem de programação C#
Automated Thyroid Ultrasound Analysis
Hashimoto's Thyroiditis
C# programming language
topic Análise ultrassonográfica automatizada da tireoide
Tireoidite de Hashimoto
linguagem de programação C#
Automated Thyroid Ultrasound Analysis
Hashimoto's Thyroiditis
C# programming language
description Introduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/9472
10.1590/SciELOPreprints.9472
url https://preprints.scielo.org/index.php/scielo/preprint/view/9472
identifier_str_mv 10.1590/SciELOPreprints.9472
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/9472/17735
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:Scientific Electronic Library Online (SCIELO)
instacron:SCI
instname_str Scientific Electronic Library Online (SCIELO)
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - Scientific Electronic Library Online (SCIELO)
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1831964358323732480