Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , , |
| Tipo de documento: | preprint |
| Idioma: | por |
| Título da fonte: | SciELO Preprints |
| Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/9472 |
Resumo: | Introduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis. |
| id |
SCI-1_93a3251ca8c45595feb504f217491ca3 |
|---|---|
| oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/9472 |
| network_acronym_str |
SCI-1 |
| network_name_str |
SciELO Preprints |
| repository_id_str |
|
| spelling |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial IntelligenceAvaliação ultrassonográfica automatizada da tireoidite de Hashimoto usando inteligência artificialAnálise ultrassonográfica automatizada da tireoideTireoidite de Hashimotolinguagem de programação C#Automated Thyroid Ultrasound AnalysisHashimoto's ThyroiditisC# programming languageIntroduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis.Introdução: A ultrassonografia da tireoide fornece informações valiosas para distúrbios da tireoide, mas é dificultada pela sua subjetividade. A análise automatizada utilizando grandes conjuntos de dados é uma grande promessa para avaliação objetiva e triagem padronizada, classificação de nódulos tireoidianos e monitoramento de tratamento. No entanto, permanece uma lacuna significativa no desenvolvimento de aplicações para a análise automatizada da tireoidite de Hashimoto (TH) por meio de ultrassonografia. Objetivo: Desenvolver um algoritmo automatizado da análise ultrassonográfica da tireoide (AUST) utilizando a linguagem de programação C# para detectar e quantificar características ultrassonográficas associadas à TH. Materiais e Métodos: Este estudo descreve o desenvolvimento e avaliação de um algoritmo AUST utilizando programação C#. O algoritmo extrai características relevantes (textura, vascularização, ecogenicidade) de imagens de ultrassonografia pré-processadas e utiliza técnicas de aprendizado de máquina para classificá-las como “normais” ou indicativas de TH. O modelo é treinado e validado em um conjunto de dados abrangente, com desempenho avaliado por meio de métricas como precisão, sensibilidade e especificidade. As descobertas destacam o potencial deste algoritmo AUST baseado em programação C# para oferecer avaliação objetiva e padronizada para o diagnóstico de TH. Resultados: O programa pré-processa imagens (conversão em escala de cinza, normalização, etc.), segmentos da tireoide, extrai características (textura, ecogenicidade) e utiliza um modelo pré-treinado para classificação ("normal" ou "suspeita de tireoidite de Hashimoto"). Usando uma imagem de amostra, o programa pré-processou, segmentou e extraiu recursos com sucesso. A classificação prevista (“suspeita de TH”) com alta probabilidade (0,92) alinha-se ao diagnóstico pré-estabelecido, sugerindo potencial para avaliação objetiva da TH. Conclusão: O algoritmo AUST baseado em programação C# detectou e quantificou com sucesso as características da TH, mostrando o potencial da programação avançada na análise de imagens médicas.SciELO PreprintsSciELO PreprintsSciELO Preprints2024-08-01info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/947210.1590/SciELOPreprints.9472porhttps://preprints.scielo.org/index.php/scielo/preprint/view/9472/17735Copyright (c) 2024 Luisa Correia Matos de Oliveira, Gabriela Correia Matos de Oliveira, Luis Matos de Oliveira, Adriana Malta de Figueiredo, Luis Jesuino de Oliveira Andradehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira, Luisa Correia Matos deOliveira, Gabriela Correia Matos deOliveira, Luis Matos deFigueiredo, Adriana Malta deAndrade, Luis Jesuino de Oliveirareponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2024-07-20T17:24:23Zoai:ops.preprints.scielo.org:preprint/9472Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2024-07-20T17:24:23SciELO Preprints - Scientific Electronic Library Online (SCIELO)false |
| dc.title.none.fl_str_mv |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence Avaliação ultrassonográfica automatizada da tireoidite de Hashimoto usando inteligência artificial |
| title |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| spellingShingle |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence Oliveira, Luisa Correia Matos de Análise ultrassonográfica automatizada da tireoide Tireoidite de Hashimoto linguagem de programação C# Automated Thyroid Ultrasound Analysis Hashimoto's Thyroiditis C# programming language |
| title_short |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| title_full |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| title_fullStr |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| title_full_unstemmed |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| title_sort |
Automated Sonographic Assessment of Hashimoto's Thyroiditis Using Artificial Intelligence |
| author |
Oliveira, Luisa Correia Matos de |
| author_facet |
Oliveira, Luisa Correia Matos de Oliveira, Gabriela Correia Matos de Oliveira, Luis Matos de Figueiredo, Adriana Malta de Andrade, Luis Jesuino de Oliveira |
| author_role |
author |
| author2 |
Oliveira, Gabriela Correia Matos de Oliveira, Luis Matos de Figueiredo, Adriana Malta de Andrade, Luis Jesuino de Oliveira |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Oliveira, Luisa Correia Matos de Oliveira, Gabriela Correia Matos de Oliveira, Luis Matos de Figueiredo, Adriana Malta de Andrade, Luis Jesuino de Oliveira |
| dc.subject.por.fl_str_mv |
Análise ultrassonográfica automatizada da tireoide Tireoidite de Hashimoto linguagem de programação C# Automated Thyroid Ultrasound Analysis Hashimoto's Thyroiditis C# programming language |
| topic |
Análise ultrassonográfica automatizada da tireoide Tireoidite de Hashimoto linguagem de programação C# Automated Thyroid Ultrasound Analysis Hashimoto's Thyroiditis C# programming language |
| description |
Introduction: Thyroid ultrasound provides valuable insights for thyroid disorders but is hampered by subjectivity. Automated analysis utilizing large datasets holds immense promise for objective and standardized assessment in screening, thyroid nodule classification, and treatment monitoring. However, there remains a significant gap in the development of applications for the automated analysis of Hashimoto's thyroiditis (HT) using ultrasound. Objective: To develop an automated thyroid ultrasound analysis (ATUS) algorithm using the C# programming language to detect and quantify ultrasonographic characteristics associated with HT. Materials and Methods: This study describes the development and evaluation of an ATUS algorithm using C#. The algorithm extracted relevant features (texture, vascularization, echogenicity) from preprocessed ultrasound images and utilizes machine learning techniques to classify them as "normal" or indicative of HT. The model is trained and validated on a comprehensive dataset, with performance assessed through metrics like accuracy, sensitivity, and specificity. The findings highlight the potential for this C#-based ATUS algorithm to offer objective and standardized assessment for HT diagnosis. Results: The program preprocesses images (grayscale conversion, normalization, etc.), segments the thyroid region, extracts features (texture, echogenicity), and utilizes a pre-trained model for classification ("normal" or "suspected Hashimoto's thyroiditis"). Using a sample image, the program successfully preprocessed, segmented, and extracted features. The predicted classification ("suspected HT") with high probability (0.92) aligns with the pre-established diagnosis, suggesting potential for objective HT assessment. Conclusion: C#-based ATUS algorithm successfully detects and quantifies HT features, showcasing the potential of advanced programming in medical image analysis. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
| format |
preprint |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/9472 10.1590/SciELOPreprints.9472 |
| url |
https://preprints.scielo.org/index.php/scielo/preprint/view/9472 |
| identifier_str_mv |
10.1590/SciELOPreprints.9472 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/9472/17735 |
| dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
| publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
| dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:Scientific Electronic Library Online (SCIELO) instacron:SCI |
| instname_str |
Scientific Electronic Library Online (SCIELO) |
| instacron_str |
SCI |
| institution |
SCI |
| reponame_str |
SciELO Preprints |
| collection |
SciELO Preprints |
| repository.name.fl_str_mv |
SciELO Preprints - Scientific Electronic Library Online (SCIELO) |
| repository.mail.fl_str_mv |
scielo.submission@scielo.org |
| _version_ |
1831964358323732480 |