Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação

Bibliographic Details
Main Author: Barbosa, Gustavo Souza
Publication Date: 2024
Format: Bachelor thesis
Language: por
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/20633
Summary: The increasing popularity of additive manufacturing (AM) over the past decades is attributed to its lean production characteristics and the capacity to fabricate complex geometries. This growth has spurred industry efforts and investments in research to advance techniques that improve manufacturing quality, efficiency, and cost-effectiveness. This study aims to evaluate new investigative methods and approaches related to fused deposition modeling (FDM), commonly known as 3D printing, using ABS polymer as the material of choice. To assess the feasibility of extrusion simulation tools, two die geometries were considered: one with a 3 mm circular profile and another with a concave square profile inscribed within a 3 mm circle, based on the equipment available at the Mechanical Engineering Laboratory of UFSCar. For each die, combinations of temperature (80°C and 100°C) and ram speed (3 mm/s and 6 mm/s) were tested, yielding eight distinct conditions. These parameters were entered into the QformUK software to analyze its capabilities and limitations in simulating the polymer extrusion process. The results revealed that the Hensel-Spittel constitutive model is inadequate for accurately describing the rheological behavior of polymers, as the simulations did not replicate the experimentally observed geometries with precision. This shortfall is primarily attributed to the oversimplifications made when adapting constitutive models for metals to polymeric materials. Specifically, the Hensel-Spittel model proved insufficient in capturing the non-Newtonian behavior characteristic of polymers. Consequently, the simulations failed to account for advanced viscous effects, limiting the software’s ability to faithfully represent the polymer extrusion process. Future research should explore the use of more suitable tools, such as the development of specialized subroutines, to more accurately model polymer materials in QformUK.
id SCAR_f56f5302b552c2813bb2645ba1c0bdb8
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/20633
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Barbosa, Gustavo SouzaMalavolta, Alexandre Tácitohttp://lattes.cnpq.br/84773131735819672024-09-24T11:48:21Z2024-09-24T11:48:21Z2024-09-20BARBOSA, Gustavo Souza. Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20633.https://repositorio.ufscar.br/handle/20.500.14289/20633The increasing popularity of additive manufacturing (AM) over the past decades is attributed to its lean production characteristics and the capacity to fabricate complex geometries. This growth has spurred industry efforts and investments in research to advance techniques that improve manufacturing quality, efficiency, and cost-effectiveness. This study aims to evaluate new investigative methods and approaches related to fused deposition modeling (FDM), commonly known as 3D printing, using ABS polymer as the material of choice. To assess the feasibility of extrusion simulation tools, two die geometries were considered: one with a 3 mm circular profile and another with a concave square profile inscribed within a 3 mm circle, based on the equipment available at the Mechanical Engineering Laboratory of UFSCar. For each die, combinations of temperature (80°C and 100°C) and ram speed (3 mm/s and 6 mm/s) were tested, yielding eight distinct conditions. These parameters were entered into the QformUK software to analyze its capabilities and limitations in simulating the polymer extrusion process. The results revealed that the Hensel-Spittel constitutive model is inadequate for accurately describing the rheological behavior of polymers, as the simulations did not replicate the experimentally observed geometries with precision. This shortfall is primarily attributed to the oversimplifications made when adapting constitutive models for metals to polymeric materials. Specifically, the Hensel-Spittel model proved insufficient in capturing the non-Newtonian behavior characteristic of polymers. Consequently, the simulations failed to account for advanced viscous effects, limiting the software’s ability to faithfully represent the polymer extrusion process. Future research should explore the use of more suitable tools, such as the development of specialized subroutines, to more accurately model polymer materials in QformUK.A popularidade da manufatura aditiva (MA) vem crescendo nas últimas décadas devido à sua característica de fabricação enxuta e à possibilidade de fabricação de geometrias complexas. Com isso, a indústria anseia e investe em estudos e geração de conhecimentos para o desenvolvimento de técnicas deste processo, visando melhorias na qualidade, tempo e custo de fabricação. Este trabalho visa avaliar novos métodos de investigação e estudos sobre a técnica de deposição de material fundido (FDM - Fused Deposition Modeling), conhecida como impressão 3D, utilizando como material o polímero ABS. A fim de avaliar a viabilidade de uma ferramenta simulacional de extrusão, foram considerados esforços e geometrias de duas matrizes, uma com perfil circular de 3 mm e outra com perfil quadrado côncavo inscrito em uma circunferência de 3 mm, seguindo como referência equipamentos presentes no laboratório de Engenharia Mecânica da UFSCar. Foi realizada, para cada matriz, uma combinação variando a temperatura (80ºC e 100ºC) e a velocidade do aríete (3 mm/s e 6 mm/s), totalizando oito combinações. Esses dados foram incluídos no software QformUK para estudar suas capacidades e limitações na análise do processo de extrusão de filamento polimérico. Os resultados mostraram que, o modelo constitutivo de Hensel-Spittel é insuficiente para descrever o comportamento reológico dos polímeros e, as simulações não conseguiram replicar com precisão as geometrias observadas experimentalmente. Isso se deve, em grande parte, à simplificação realizada para ajustar os modelos constitutivos para metais nos materiais poliméricos. O modelo Hensel-Spittel, se mostrou inadequado para descrever o comportamento não-Newtoniano típico dos polímeros. Dessa forma, as simula- ções não consideram efeitos viscosos avançados, limitando sua capacidade de representar com fidelidade o processo de extrusão polimérica. Trabalhos futuros poderão explorar essa ferramentas de forma mais adequada, através do desenvolvimento de subrotinas específicas para modelar de maneira mais precisa esses materiais no QformUK.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosEngenharia Mecânica - EMecUFSCarAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessManufatura aditivaSimulação computacionalAditive manufacturingComputational simulationENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOSEstudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operaçãoNumerical study of the ABS extrusion process considering different extruder nozzle geometries and operating conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTTCC_GustavoBarbosa_Final.pdf.txtTCC_GustavoBarbosa_Final.pdf.txtExtracted texttext/plain67967https://repositorio.ufscar.br/bitstreams/a7a218ab-0d36-466b-b454-fc69ab41e83e/download5230141850a444b81855e342944e574bMD53falseAnonymousREADTHUMBNAILTCC_GustavoBarbosa_Final.pdf.jpgTCC_GustavoBarbosa_Final.pdf.jpgGenerated Thumbnailimage/jpeg4548https://repositorio.ufscar.br/bitstreams/f55e1380-593a-4d2e-a614-c31c2272e00d/download485641bc2c59d8ac296a2515cc13b446MD54falseAnonymousREADORIGINALTCC_GustavoBarbosa_Final.pdfTCC_GustavoBarbosa_Final.pdfTCC_Finalapplication/pdf2343213https://repositorio.ufscar.br/bitstreams/af43680f-5f6b-4698-8f07-f483ed0ab132/download8ce5ae5bd3d4cad5907b36114a8447d8MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8804https://repositorio.ufscar.br/bitstreams/813f6e55-54ce-4b5e-a062-38db9807efc5/download4774e414fb27824b0dfca5f33e4ff24fMD52falseAnonymousREAD20.500.14289/206332025-02-06 03:22:02.941http://creativecommons.org/licenses/by-nd/3.0/br/Attribution-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/20633https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T06:22:02Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
dc.title.alternative.eng.fl_str_mv Numerical study of the ABS extrusion process considering different extruder nozzle geometries and operating conditions
title Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
spellingShingle Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
Barbosa, Gustavo Souza
Manufatura aditiva
Simulação computacional
Aditive manufacturing
Computational simulation
ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
title_short Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
title_full Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
title_fullStr Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
title_full_unstemmed Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
title_sort Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação
author Barbosa, Gustavo Souza
author_facet Barbosa, Gustavo Souza
author_role author
dc.contributor.author.fl_str_mv Barbosa, Gustavo Souza
dc.contributor.advisor1.fl_str_mv Malavolta, Alexandre Tácito
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8477313173581967
contributor_str_mv Malavolta, Alexandre Tácito
dc.subject.por.fl_str_mv Manufatura aditiva
Simulação computacional
topic Manufatura aditiva
Simulação computacional
Aditive manufacturing
Computational simulation
ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
dc.subject.eng.fl_str_mv Aditive manufacturing
Computational simulation
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
description The increasing popularity of additive manufacturing (AM) over the past decades is attributed to its lean production characteristics and the capacity to fabricate complex geometries. This growth has spurred industry efforts and investments in research to advance techniques that improve manufacturing quality, efficiency, and cost-effectiveness. This study aims to evaluate new investigative methods and approaches related to fused deposition modeling (FDM), commonly known as 3D printing, using ABS polymer as the material of choice. To assess the feasibility of extrusion simulation tools, two die geometries were considered: one with a 3 mm circular profile and another with a concave square profile inscribed within a 3 mm circle, based on the equipment available at the Mechanical Engineering Laboratory of UFSCar. For each die, combinations of temperature (80°C and 100°C) and ram speed (3 mm/s and 6 mm/s) were tested, yielding eight distinct conditions. These parameters were entered into the QformUK software to analyze its capabilities and limitations in simulating the polymer extrusion process. The results revealed that the Hensel-Spittel constitutive model is inadequate for accurately describing the rheological behavior of polymers, as the simulations did not replicate the experimentally observed geometries with precision. This shortfall is primarily attributed to the oversimplifications made when adapting constitutive models for metals to polymeric materials. Specifically, the Hensel-Spittel model proved insufficient in capturing the non-Newtonian behavior characteristic of polymers. Consequently, the simulations failed to account for advanced viscous effects, limiting the software’s ability to faithfully represent the polymer extrusion process. Future research should explore the use of more suitable tools, such as the development of specialized subroutines, to more accurately model polymer materials in QformUK.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-09-24T11:48:21Z
dc.date.available.fl_str_mv 2024-09-24T11:48:21Z
dc.date.issued.fl_str_mv 2024-09-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARBOSA, Gustavo Souza. Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20633.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/20633
identifier_str_mv BARBOSA, Gustavo Souza. Estudo numérico do processo de extrusão de ABS considerando diferentes geometrias do bico extrusor e condições de operação. 2024. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecânica) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20633.
url https://repositorio.ufscar.br/handle/20.500.14289/20633
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
Engenharia Mecânica - EMec
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
Engenharia Mecânica - EMec
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/a7a218ab-0d36-466b-b454-fc69ab41e83e/download
https://repositorio.ufscar.br/bitstreams/f55e1380-593a-4d2e-a614-c31c2272e00d/download
https://repositorio.ufscar.br/bitstreams/af43680f-5f6b-4698-8f07-f483ed0ab132/download
https://repositorio.ufscar.br/bitstreams/813f6e55-54ce-4b5e-a062-38db9807efc5/download
bitstream.checksum.fl_str_mv 5230141850a444b81855e342944e574b
485641bc2c59d8ac296a2515cc13b446
8ce5ae5bd3d4cad5907b36114a8447d8
4774e414fb27824b0dfca5f33e4ff24f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469079761551360