Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation

Detalhes bibliográficos
Autor(a) principal: Henriques, Marcos Jardel
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/20.500.14289/21072
Resumo: This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved.
id SCAR_e8cdf1990c33f1051ca23510869f230b
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/21072
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Henriques, Marcos JardelLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/3011323408047031https://orcid.org/0000-0002-5775-7026https://orcid.org/0000-0001-7815-95542024-11-27T21:21:23Z2024-11-27T21:21:23Z2024-09-27HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072.https://repositorio.ufscar.br/handle/20.500.14289/21072This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved.Esta tese apresenta soluções estatísticas para alguns problemas relacionados à agricultura. Um deles propõe uma plataforma que gera planos amostrais fundamentados na estatística teórica, utilizando computação e considerando conhecimentos das ciências agrárias. A plataforma foi desenvolvida para gerar planos amostrais automáticos, visando agilizar a detecção da proporção da doença \textit{greening} em lavouras de laranja. Isso porque, no Brasil, é exigido que se faça senso para se detectar tais proporções. Para esse primeiro caso, a modelagem foi estruturada por meio de técnicas de amostragem, através de hierarquias envolvendo distribuições de contagem e proporção, especificamente a Beta-Binomial e a FlexShape-Binomial. O segundo problema abordado nesta tese consiste no seguinte: há alguns anos, muitas revistas científicas da área de ciências agrárias passaram a exigir a realização de dois ensaios idênticos, em diferentes épocas, para a possibilidade de submissão às revistas. Ou seja, somente com os resultados dos dois ensaios, seria possível submeter o artigo para tais periódicos. Assim, com dois bancos de dados que quase atendem a essa exigência (ou seja, experimentos realizados de forma quase idênticas), foi proposta uma abordagem estatística para demonstrar a equivalência entre os dois experimentos, utilizando modelagens bayesianas para se comparar prioris informativas e posteriores. As diferenças entre os dois bancos de dados ocorreram durante a coleta dos dados. Para este segundo momento da tese, os dados são provenientes de experimentos planejados para detectar variedades de laranja resistentes à doença do cancro cítrico. Para solucioná-lo, a proposta consiste em apresentar um modelo de regressão não-linear baseado na distribuição de probabilidade Gamma, associada às curvas de crescimento Logística, Gompertz, Weibull e Hill. No terceiro problema, a tese busca analisar um conjunto de dados experimentais, cujo objetivo foi identificar as melhores combinações de porta-enxertos de variedades de laranja que conferissem resistência à doença do cancro cítrico às novas plantas. Nesta etapa, a modelagem foi realizada através da distribuição de probabilidade Beta Inflacionada de Zeros Bayesiana Longitudinal. Os três problemas principais da tese foram solucionados, e, além disso, direta ou indiretamente, outros problemas e resultados agronômicos como a descoberta de novas variedades resistentes à doença do cancro cítrico foram detectadas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFlexShape-binomialBeta-binomialInflated betaLogistic modelGompertzWeibullHillBayesian inferenceLongitudinal dataGammaDados longitudinaisInferência BayesianaModelo logísticoBeta inflacionadaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICACIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASStatistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivationModelagens estatísticas como auxílio à pesquisa acadêmica e controle das doenças greening e cancro cítrico na cultura da laranjainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.txtTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.txtExtracted texttext/plain101249https://repositorio.ufscar.br/bitstreams/3ba5c8a3-7ce2-4964-9dbe-6355c71c62d1/downloada97757d4a137e69faa482915246976dbMD54falseAnonymousREADTHUMBNAILTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.jpgTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.jpgGenerated Thumbnailimage/jpeg6494https://repositorio.ufscar.br/bitstreams/982c2043-ae53-4935-89c6-68e535ef0b28/download3bcee56f91865480b573894c8dff4dc8MD55falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/0a2e13cf-cc65-41d7-ae94-a04e0c84bf93/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREADORIGINALTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdfTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdfTese de Doutoradoapplication/pdf6236411https://repositorio.ufscar.br/bitstreams/f31a5c32-c5b1-4666-93b2-14096d0d2ee6/download389dfd96e6f3c340cabc172894dd2d0dMD53trueAnonymousREAD20.500.14289/210722025-02-06 04:12:57.481http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/21072https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T07:12:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
dc.title.alternative.por.fl_str_mv Modelagens estatísticas como auxílio à pesquisa acadêmica e controle das doenças greening e cancro cítrico na cultura da laranja
title Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
spellingShingle Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
Henriques, Marcos Jardel
FlexShape-binomial
Beta-binomial
Inflated beta
Logistic model
Gompertz
Weibull
Hill
Bayesian inference
Longitudinal data
Gamma
Dados longitudinais
Inferência Bayesiana
Modelo logístico
Beta inflacionada
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
title_short Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
title_full Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
title_fullStr Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
title_full_unstemmed Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
title_sort Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
author Henriques, Marcos Jardel
author_facet Henriques, Marcos Jardel
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3011323408047031
dc.contributor.authororcid.por.fl_str_mv https://orcid.org/0000-0002-5775-7026
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0001-7815-9554
dc.contributor.author.fl_str_mv Henriques, Marcos Jardel
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
contributor_str_mv Louzada Neto, Francisco
dc.subject.eng.fl_str_mv FlexShape-binomial
Beta-binomial
Inflated beta
Logistic model
Gompertz
Weibull
Hill
Bayesian inference
Longitudinal data
topic FlexShape-binomial
Beta-binomial
Inflated beta
Logistic model
Gompertz
Weibull
Hill
Bayesian inference
Longitudinal data
Gamma
Dados longitudinais
Inferência Bayesiana
Modelo logístico
Beta inflacionada
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
dc.subject.por.fl_str_mv Gamma
Dados longitudinais
Inferência Bayesiana
Modelo logístico
Beta inflacionada
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
description This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-11-27T21:21:23Z
dc.date.available.fl_str_mv 2024-11-27T21:21:23Z
dc.date.issued.fl_str_mv 2024-09-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/21072
identifier_str_mv HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072.
url https://repositorio.ufscar.br/handle/20.500.14289/21072
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/3ba5c8a3-7ce2-4964-9dbe-6355c71c62d1/download
https://repositorio.ufscar.br/bitstreams/982c2043-ae53-4935-89c6-68e535ef0b28/download
https://repositorio.ufscar.br/bitstreams/0a2e13cf-cc65-41d7-ae94-a04e0c84bf93/download
https://repositorio.ufscar.br/bitstreams/f31a5c32-c5b1-4666-93b2-14096d0d2ee6/download
bitstream.checksum.fl_str_mv a97757d4a137e69faa482915246976db
3bcee56f91865480b573894c8dff4dc8
f337d95da1fce0a22c77480e5e9a7aec
389dfd96e6f3c340cabc172894dd2d0d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469086997774336