Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Tese |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UFSCAR |
| Texto Completo: | https://repositorio.ufscar.br/handle/20.500.14289/21072 |
Resumo: | This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved. |
| id |
SCAR_e8cdf1990c33f1051ca23510869f230b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/21072 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
4322 |
| spelling |
Henriques, Marcos JardelLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890http://lattes.cnpq.br/3011323408047031https://orcid.org/0000-0002-5775-7026https://orcid.org/0000-0001-7815-95542024-11-27T21:21:23Z2024-11-27T21:21:23Z2024-09-27HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072.https://repositorio.ufscar.br/handle/20.500.14289/21072This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved.Esta tese apresenta soluções estatísticas para alguns problemas relacionados à agricultura. Um deles propõe uma plataforma que gera planos amostrais fundamentados na estatística teórica, utilizando computação e considerando conhecimentos das ciências agrárias. A plataforma foi desenvolvida para gerar planos amostrais automáticos, visando agilizar a detecção da proporção da doença \textit{greening} em lavouras de laranja. Isso porque, no Brasil, é exigido que se faça senso para se detectar tais proporções. Para esse primeiro caso, a modelagem foi estruturada por meio de técnicas de amostragem, através de hierarquias envolvendo distribuições de contagem e proporção, especificamente a Beta-Binomial e a FlexShape-Binomial. O segundo problema abordado nesta tese consiste no seguinte: há alguns anos, muitas revistas científicas da área de ciências agrárias passaram a exigir a realização de dois ensaios idênticos, em diferentes épocas, para a possibilidade de submissão às revistas. Ou seja, somente com os resultados dos dois ensaios, seria possível submeter o artigo para tais periódicos. Assim, com dois bancos de dados que quase atendem a essa exigência (ou seja, experimentos realizados de forma quase idênticas), foi proposta uma abordagem estatística para demonstrar a equivalência entre os dois experimentos, utilizando modelagens bayesianas para se comparar prioris informativas e posteriores. As diferenças entre os dois bancos de dados ocorreram durante a coleta dos dados. Para este segundo momento da tese, os dados são provenientes de experimentos planejados para detectar variedades de laranja resistentes à doença do cancro cítrico. Para solucioná-lo, a proposta consiste em apresentar um modelo de regressão não-linear baseado na distribuição de probabilidade Gamma, associada às curvas de crescimento Logística, Gompertz, Weibull e Hill. No terceiro problema, a tese busca analisar um conjunto de dados experimentais, cujo objetivo foi identificar as melhores combinações de porta-enxertos de variedades de laranja que conferissem resistência à doença do cancro cítrico às novas plantas. Nesta etapa, a modelagem foi realizada através da distribuição de probabilidade Beta Inflacionada de Zeros Bayesiana Longitudinal. Os três problemas principais da tese foram solucionados, e, além disso, direta ou indiretamente, outros problemas e resultados agronômicos como a descoberta de novas variedades resistentes à doença do cancro cítrico foram detectadas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFlexShape-binomialBeta-binomialInflated betaLogistic modelGompertzWeibullHillBayesian inferenceLongitudinal dataGammaDados longitudinaisInferência BayesianaModelo logísticoBeta inflacionadaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICACIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASStatistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivationModelagens estatísticas como auxílio à pesquisa acadêmica e controle das doenças greening e cancro cítrico na cultura da laranjainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.txtTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.txtExtracted texttext/plain101249https://repositorio.ufscar.br/bitstreams/3ba5c8a3-7ce2-4964-9dbe-6355c71c62d1/downloada97757d4a137e69faa482915246976dbMD54falseAnonymousREADTHUMBNAILTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.jpgTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdf.jpgGenerated Thumbnailimage/jpeg6494https://repositorio.ufscar.br/bitstreams/982c2043-ae53-4935-89c6-68e535ef0b28/download3bcee56f91865480b573894c8dff4dc8MD55falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/0a2e13cf-cc65-41d7-ae94-a04e0c84bf93/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREADORIGINALTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdfTese_Estatistica_Marcos_Jardel_Henriques_Versao_Revisada.pdfTese de Doutoradoapplication/pdf6236411https://repositorio.ufscar.br/bitstreams/f31a5c32-c5b1-4666-93b2-14096d0d2ee6/download389dfd96e6f3c340cabc172894dd2d0dMD53trueAnonymousREAD20.500.14289/210722025-02-06 04:12:57.481http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/21072https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T07:12:57Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| dc.title.alternative.por.fl_str_mv |
Modelagens estatísticas como auxílio à pesquisa acadêmica e controle das doenças greening e cancro cítrico na cultura da laranja |
| title |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| spellingShingle |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation Henriques, Marcos Jardel FlexShape-binomial Beta-binomial Inflated beta Logistic model Gompertz Weibull Hill Bayesian inference Longitudinal data Gamma Dados longitudinais Inferência Bayesiana Modelo logístico Beta inflacionada CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| title_short |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| title_full |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| title_fullStr |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| title_full_unstemmed |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| title_sort |
Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation |
| author |
Henriques, Marcos Jardel |
| author_facet |
Henriques, Marcos Jardel |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3011323408047031 |
| dc.contributor.authororcid.por.fl_str_mv |
https://orcid.org/0000-0002-5775-7026 |
| dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000-0001-7815-9554 |
| dc.contributor.author.fl_str_mv |
Henriques, Marcos Jardel |
| dc.contributor.advisor1.fl_str_mv |
Louzada Neto, Francisco |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0994050156415890 |
| contributor_str_mv |
Louzada Neto, Francisco |
| dc.subject.eng.fl_str_mv |
FlexShape-binomial Beta-binomial Inflated beta Logistic model Gompertz Weibull Hill Bayesian inference Longitudinal data |
| topic |
FlexShape-binomial Beta-binomial Inflated beta Logistic model Gompertz Weibull Hill Bayesian inference Longitudinal data Gamma Dados longitudinais Inferência Bayesiana Modelo logístico Beta inflacionada CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| dc.subject.por.fl_str_mv |
Gamma Dados longitudinais Inferência Bayesiana Modelo logístico Beta inflacionada |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| description |
This thesis presents statistical solutions to several problems related to agriculture. One of them proposes a platform that generates sampling plans based on theoretical statistics, utilizing computation and considering knowledge from agricultural sciences. The platform was developed to generate automatic sampling plans, aiming to expedite the detection of the proportion of the \textit{greening} disease in orange groves. This is because, in Brazil, it is required to conduct a census to detect such proportions. For this first case, the modeling was structured through sampling techniques, using hierarchies involving count and proportion distributions, specifically the Beta-Binomial and the FlexShape-Binomial. The second problem addressed in this thesis consists of the following: for some years, many scientific journals in the field of agricultural sciences have required two identical trials, conducted at different times, to allow submission to these journals. In other words, only with the results of both trials would it be possible to submit an article to such journals. Thus, using two datasets that almost meet this requirement (i.e., experiments conducted in nearly identical ways), a statistical approach was proposed to demonstrate the equivalence between the two experiments, utilizing Bayesian modeling to compare informative priors and posteriors. The differences between the two datasets occurred during data collection. For this second part of the thesis, the data are derived from experiments designed to detect orange varieties resistant to citrus canker disease. To address this, the proposal consists of presenting a non-linear regression model based on the Gamma probability distribution, associated with growth curves such as Logistic, Gompertz, Weibull, and Hill. In the third problem, the thesis seeks to analyze a set of experimental data, aiming to identify the best combinations of rootstocks for orange varieties that confer resistance to citrus canker disease in new plants. At this stage, the modeling was conducted using the Bayesian Longitudinal Zero-Inflated Beta probability distribution. The three main problems of the thesis were solved, and, in addition, directly or indirectly, other problems and agronomic results, such as the discovery of new varieties resistant to citrus canker disease, were achieved. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-11-27T21:21:23Z |
| dc.date.available.fl_str_mv |
2024-11-27T21:21:23Z |
| dc.date.issued.fl_str_mv |
2024-09-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/21072 |
| identifier_str_mv |
HENRIQUES, Marcos Jardel. Statistical modeling as an aid to academic research and control of citrus greening and citrus canker diseases in orange cultivation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/21072. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/21072 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/3ba5c8a3-7ce2-4964-9dbe-6355c71c62d1/download https://repositorio.ufscar.br/bitstreams/982c2043-ae53-4935-89c6-68e535ef0b28/download https://repositorio.ufscar.br/bitstreams/0a2e13cf-cc65-41d7-ae94-a04e0c84bf93/download https://repositorio.ufscar.br/bitstreams/f31a5c32-c5b1-4666-93b2-14096d0d2ee6/download |
| bitstream.checksum.fl_str_mv |
a97757d4a137e69faa482915246976db 3bcee56f91865480b573894c8dff4dc8 f337d95da1fce0a22c77480e5e9a7aec 389dfd96e6f3c340cabc172894dd2d0d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1834469086997774336 |