Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UFSCAR |
| Texto Completo: | https://repositorio.ufscar.br/handle/20.500.14289/20752 |
Resumo: | The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks. |
| id |
SCAR_d6a535b6fe76c28852f5882068ef3bba |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/20752 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
4322 |
| spelling |
Kaviani, MinaVerdi, Fábio Lucianohttp://lattes.cnpq.br/9143186843657940Almeida, Jurandyhttps://lattes.cnpq.br/45747986097181402024-10-07T19:33:32Z2024-10-07T19:33:32Z2024-09-19KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752.https://repositorio.ufscar.br/handle/20.500.14289/20752The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.A evolução dos padrões de consumo de dados, cada vez mais descentralizados do comportamento humano, exerceu pressão sobre os recursos de transmissão na infraestrutura atual de redes móveis. Em resposta a esse desafio, as Redes de Quinta Geração (5G) foram padronizadas e implantadas globalmente, incorporando links de ondas milimétricas de alta frequência para atender às crescentes demandas por velocidades de transferência de dados. O 5G representa a quinta geração de tecnologia sem fio, caracterizada por suas velocidades de dados aprimoradas, menor latência e capacidade expandida em comparação com iterações anteriores. Esse avanço tem o potencial de transformar a comunicação, facilitando a implementação de aplicações de ponta, como veículos autônomos, realidade aumentada e conectividade contínua com a Internet das Coisas (IoT). Sua ampla implementação está destinada a revolucionar diversas indústrias e a fortalecer a conectividade em nosso ambiente cada vez mais digitalizado. No entanto, a abordagem de gerenciamento existente para redes 5G é reativa, dependendo dos dispositivos dos usuários para calcular os parâmetros da rede, que são então periodicamente transmitidos para as estações base. Essa metodologia reativa introduz atrasos e lentidões na rede, potencialmente colocando em risco o cumprimento oportuno dos requisitos operacionais. No contexto das redes 5G, o Indicador de Qualidade de Canal (CQI) desempenha um papel fundamental na adaptação dos esquemas de modulação e codificação com base nas condições do canal, garantindo taxas de transferência de dados e desempenho de rede ideais. Pesquisas recentes concentram-se em melhorar a estimativa do CQI em redes 5G usando aprendizado de máquina. Nesse campo, as funções de perda desempenham um papel crucial, servindo como um guia para o treinamento de modelos e a otimização de seu desempenho. Duas funções de perda comumente usadas são o Erro Médio Quadrático (MSE) e o Erro Médio Absoluto (MAE). Grosso modo, o MSE dá mais peso a outliers, enquanto o MAE ao grupo majoritário. Aqui, argumentamos que a função de perda Huber é mais adequada para a previsão de CQI, pois combina os benefícios de MSE e MAE. Para alcançar isso, a função Huber transita suavemente entre MSE e MAE, controlada por um hiperparâmetro definido pelo usuário, chamado delta. No entanto, encontrar o equilíbrio certo entre a sensibilidade a pequenos erros (MAE) e a robustez a outliers (MSE) escolhendo manualmente o delta ideal é desafiador. Para resolver esse problema, propomos uma nova função de perda, denominada Função de Perda Huber Adaptativa Baseada em Resíduos (RAHL). No RAHL, um resíduo aprendível é adicionado ao delta, permitindo que o modelo se adapte com base na distribuição dos erros nos dados. Nossa abordagem equilibra efetivamente a robustez do modelo contra outliers, enquanto preserva a precisão dos dados dentro do padrão. O amplamente reconhecido modelo de Memória de Longo e Curto Prazo (LSTM) é empregado em conjunto com o RAHL, apresentando resultados significativamente aprimorados em comparação com as funções de perda mencionadas anteriormente. O RAHL aprimorou a precisão da previsão para os conjuntos de dados A, B e C em aproximadamente 11%, 14% e 0,3%, respectivamente, em comparação com a função de perda Huber; em 22%, 23% e 17%, respectivamente, em comparação com a função de perda MSE; e em 5%, 10% e 5%, respectivamente, em comparação com a função de perda MAE. Os resultados obtidos confirmam a superioridade do RAHL, oferecendo uma via promissora para a melhoria da previsão de CQI em redes 5G.engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-ShareAlike 3.0 BrazilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccess5G networkChannel Quality Indicator (CQI)Long Short-Term Memory (LSTM)Mean Squared Error (MSE)Mean Absolute Error (MAE)Huber lossResidual-based Adaptive Huber Loss (RAHL)CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networksRahl – uma nova função de perda de Huber adaptativa baseada em resíduos para predição de CQI em redes 5Ginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTMina_Kaviani_Master_Thesis_Aug2024.pdf.txtMina_Kaviani_Master_Thesis_Aug2024.pdf.txtExtracted texttext/plain101186https://repositorio.ufscar.br/bitstreams/fcdae615-adfc-407b-854c-af1d8ad4badf/downloada45f70a55b932a6da82bf3ad4226bec0MD53falseAnonymousREADTHUMBNAILMina_Kaviani_Master_Thesis_Aug2024.pdf.jpgMina_Kaviani_Master_Thesis_Aug2024.pdf.jpgGenerated Thumbnailimage/jpeg4020https://repositorio.ufscar.br/bitstreams/52879836-ce6b-4165-931a-e8aac2ccd243/download4b50037510e997ae2d94edd08b93c2b6MD54falseAnonymousREADORIGINALMina_Kaviani_Master_Thesis_Aug2024.pdfMina_Kaviani_Master_Thesis_Aug2024.pdfapplication/pdf3140305https://repositorio.ufscar.br/bitstreams/4ae5e4db-20e9-42f6-abce-4be5bc578b81/download929ffa09ff4a0ea8fd1884508c132b0bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/cce29817-cf6e-4950-95b3-d34a20d56d21/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREAD20.500.14289/207522025-02-06 03:30:19.119http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-ShareAlike 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/20752https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T06:30:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| dc.title.alternative.por.fl_str_mv |
Rahl – uma nova função de perda de Huber adaptativa baseada em resíduos para predição de CQI em redes 5G |
| title |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| spellingShingle |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks Kaviani, Mina 5G network Channel Quality Indicator (CQI) Long Short-Term Memory (LSTM) Mean Squared Error (MSE) Mean Absolute Error (MAE) Huber loss Residual-based Adaptive Huber Loss (RAHL) CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| title_full |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| title_fullStr |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| title_full_unstemmed |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| title_sort |
Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks |
| author |
Kaviani, Mina |
| author_facet |
Kaviani, Mina |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
https://lattes.cnpq.br/4574798609718140 |
| dc.contributor.author.fl_str_mv |
Kaviani, Mina |
| dc.contributor.advisor1.fl_str_mv |
Verdi, Fábio Luciano |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9143186843657940 |
| dc.contributor.advisor-co1.fl_str_mv |
Almeida, Jurandy |
| contributor_str_mv |
Verdi, Fábio Luciano Almeida, Jurandy |
| dc.subject.por.fl_str_mv |
5G network Channel Quality Indicator (CQI) Long Short-Term Memory (LSTM) Mean Squared Error (MSE) Mean Absolute Error (MAE) Huber loss Residual-based Adaptive Huber Loss (RAHL) |
| topic |
5G network Channel Quality Indicator (CQI) Long Short-Term Memory (LSTM) Mean Squared Error (MSE) Mean Absolute Error (MAE) Huber loss Residual-based Adaptive Huber Loss (RAHL) CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-10-07T19:33:32Z |
| dc.date.available.fl_str_mv |
2024-10-07T19:33:32Z |
| dc.date.issued.fl_str_mv |
2024-09-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/20752 |
| identifier_str_mv |
KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/20752 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-ShareAlike 3.0 Brazil Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-ShareAlike 3.0 Brazil Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/fcdae615-adfc-407b-854c-af1d8ad4badf/download https://repositorio.ufscar.br/bitstreams/52879836-ce6b-4165-931a-e8aac2ccd243/download https://repositorio.ufscar.br/bitstreams/4ae5e4db-20e9-42f6-abce-4be5bc578b81/download https://repositorio.ufscar.br/bitstreams/cce29817-cf6e-4950-95b3-d34a20d56d21/download |
| bitstream.checksum.fl_str_mv |
a45f70a55b932a6da82bf3ad4226bec0 4b50037510e997ae2d94edd08b93c2b6 929ffa09ff4a0ea8fd1884508c132b0b f337d95da1fce0a22c77480e5e9a7aec |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1834469049843580928 |