Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks

Detalhes bibliográficos
Autor(a) principal: Kaviani, Mina
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/20.500.14289/20752
Resumo: The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.
id SCAR_d6a535b6fe76c28852f5882068ef3bba
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/20752
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Kaviani, MinaVerdi, Fábio Lucianohttp://lattes.cnpq.br/9143186843657940Almeida, Jurandyhttps://lattes.cnpq.br/45747986097181402024-10-07T19:33:32Z2024-10-07T19:33:32Z2024-09-19KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752.https://repositorio.ufscar.br/handle/20.500.14289/20752The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.A evolução dos padrões de consumo de dados, cada vez mais descentralizados do comportamento humano, exerceu pressão sobre os recursos de transmissão na infraestrutura atual de redes móveis. Em resposta a esse desafio, as Redes de Quinta Geração (5G) foram padronizadas e implantadas globalmente, incorporando links de ondas milimétricas de alta frequência para atender às crescentes demandas por velocidades de transferência de dados. O 5G representa a quinta geração de tecnologia sem fio, caracterizada por suas velocidades de dados aprimoradas, menor latência e capacidade expandida em comparação com iterações anteriores. Esse avanço tem o potencial de transformar a comunicação, facilitando a implementação de aplicações de ponta, como veículos autônomos, realidade aumentada e conectividade contínua com a Internet das Coisas (IoT). Sua ampla implementação está destinada a revolucionar diversas indústrias e a fortalecer a conectividade em nosso ambiente cada vez mais digitalizado. No entanto, a abordagem de gerenciamento existente para redes 5G é reativa, dependendo dos dispositivos dos usuários para calcular os parâmetros da rede, que são então periodicamente transmitidos para as estações base. Essa metodologia reativa introduz atrasos e lentidões na rede, potencialmente colocando em risco o cumprimento oportuno dos requisitos operacionais. No contexto das redes 5G, o Indicador de Qualidade de Canal (CQI) desempenha um papel fundamental na adaptação dos esquemas de modulação e codificação com base nas condições do canal, garantindo taxas de transferência de dados e desempenho de rede ideais. Pesquisas recentes concentram-se em melhorar a estimativa do CQI em redes 5G usando aprendizado de máquina. Nesse campo, as funções de perda desempenham um papel crucial, servindo como um guia para o treinamento de modelos e a otimização de seu desempenho. Duas funções de perda comumente usadas são o Erro Médio Quadrático (MSE) e o Erro Médio Absoluto (MAE). Grosso modo, o MSE dá mais peso a outliers, enquanto o MAE ao grupo majoritário. Aqui, argumentamos que a função de perda Huber é mais adequada para a previsão de CQI, pois combina os benefícios de MSE e MAE. Para alcançar isso, a função Huber transita suavemente entre MSE e MAE, controlada por um hiperparâmetro definido pelo usuário, chamado delta. No entanto, encontrar o equilíbrio certo entre a sensibilidade a pequenos erros (MAE) e a robustez a outliers (MSE) escolhendo manualmente o delta ideal é desafiador. Para resolver esse problema, propomos uma nova função de perda, denominada Função de Perda Huber Adaptativa Baseada em Resíduos (RAHL). No RAHL, um resíduo aprendível é adicionado ao delta, permitindo que o modelo se adapte com base na distribuição dos erros nos dados. Nossa abordagem equilibra efetivamente a robustez do modelo contra outliers, enquanto preserva a precisão dos dados dentro do padrão. O amplamente reconhecido modelo de Memória de Longo e Curto Prazo (LSTM) é empregado em conjunto com o RAHL, apresentando resultados significativamente aprimorados em comparação com as funções de perda mencionadas anteriormente. O RAHL aprimorou a precisão da previsão para os conjuntos de dados A, B e C em aproximadamente 11%, 14% e 0,3%, respectivamente, em comparação com a função de perda Huber; em 22%, 23% e 17%, respectivamente, em comparação com a função de perda MSE; e em 5%, 10% e 5%, respectivamente, em comparação com a função de perda MAE. Os resultados obtidos confirmam a superioridade do RAHL, oferecendo uma via promissora para a melhoria da previsão de CQI em redes 5G.engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-ShareAlike 3.0 BrazilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccess5G networkChannel Quality Indicator (CQI)Long Short-Term Memory (LSTM)Mean Squared Error (MSE)Mean Absolute Error (MAE)Huber lossResidual-based Adaptive Huber Loss (RAHL)CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networksRahl – uma nova função de perda de Huber adaptativa baseada em resíduos para predição de CQI em redes 5Ginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTMina_Kaviani_Master_Thesis_Aug2024.pdf.txtMina_Kaviani_Master_Thesis_Aug2024.pdf.txtExtracted texttext/plain101186https://repositorio.ufscar.br/bitstreams/fcdae615-adfc-407b-854c-af1d8ad4badf/downloada45f70a55b932a6da82bf3ad4226bec0MD53falseAnonymousREADTHUMBNAILMina_Kaviani_Master_Thesis_Aug2024.pdf.jpgMina_Kaviani_Master_Thesis_Aug2024.pdf.jpgGenerated Thumbnailimage/jpeg4020https://repositorio.ufscar.br/bitstreams/52879836-ce6b-4165-931a-e8aac2ccd243/download4b50037510e997ae2d94edd08b93c2b6MD54falseAnonymousREADORIGINALMina_Kaviani_Master_Thesis_Aug2024.pdfMina_Kaviani_Master_Thesis_Aug2024.pdfapplication/pdf3140305https://repositorio.ufscar.br/bitstreams/4ae5e4db-20e9-42f6-abce-4be5bc578b81/download929ffa09ff4a0ea8fd1884508c132b0bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/cce29817-cf6e-4950-95b3-d34a20d56d21/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREAD20.500.14289/207522025-02-06 03:30:19.119http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-ShareAlike 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/20752https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T06:30:19Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
dc.title.alternative.por.fl_str_mv Rahl – uma nova função de perda de Huber adaptativa baseada em resíduos para predição de CQI em redes 5G
title Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
spellingShingle Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
Kaviani, Mina
5G network
Channel Quality Indicator (CQI)
Long Short-Term Memory (LSTM)
Mean Squared Error (MSE)
Mean Absolute Error (MAE)
Huber loss
Residual-based Adaptive Huber Loss (RAHL)
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
title_full Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
title_fullStr Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
title_full_unstemmed Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
title_sort Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks
author Kaviani, Mina
author_facet Kaviani, Mina
author_role author
dc.contributor.authorlattes.por.fl_str_mv https://lattes.cnpq.br/4574798609718140
dc.contributor.author.fl_str_mv Kaviani, Mina
dc.contributor.advisor1.fl_str_mv Verdi, Fábio Luciano
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9143186843657940
dc.contributor.advisor-co1.fl_str_mv Almeida, Jurandy
contributor_str_mv Verdi, Fábio Luciano
Almeida, Jurandy
dc.subject.por.fl_str_mv 5G network
Channel Quality Indicator (CQI)
Long Short-Term Memory (LSTM)
Mean Squared Error (MSE)
Mean Absolute Error (MAE)
Huber loss
Residual-based Adaptive Huber Loss (RAHL)
topic 5G network
Channel Quality Indicator (CQI)
Long Short-Term Memory (LSTM)
Mean Squared Error (MSE)
Mean Absolute Error (MAE)
Huber loss
Residual-based Adaptive Huber Loss (RAHL)
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The evolution of data consumption patterns, increasingly decentralized from human behavior, has exerted pressure on the transmission resources within the current mobile network infrastructure. In response to this challenge, Fifth Generation Networks (5G) have been standardized and globally deployed, incorporating high-frequency millimeter-wave links to meet the escalating demands for data transfer speeds. 5G signifies the fifth generation of wireless technology, distinguished by its enhanced data speeds, reduced latency, and expanded capacity in comparison to earlier iterations. This advancement holds the potential to transform communication, facilitating the deployment of cutting-edge applications like autonomous vehicles, augmented reality, and seamless Internet of Things (IoT) connectivity. Its extensive implementation is poised to revolutionize various industries and bolster connectivity within our increasingly digitalized environment. However, the existing management approach for 5G networks is reactive, relying on user devices to calculate network parameters, which are then periodically transmitted to base stations. This reactive methodology introduces delays and network slowdowns, potentially jeopardizing the timely fulfillment of operational requirements. In the realm of 5G networks, the Channel Quality Indicator (CQI) plays a pivotal role in adjusting modulation and coding schemes based on channel conditions, ensuring optimal data transfer rates and network performance. Recent research focuses on improving CQI estimation in 5G networks using machine learning. In this field, loss functions play a vital role, serving as a guide for training models and optimizing their performance. Two commonly used loss functions are Mean Squared Error (MSE) and Mean Absolute Error (MAE). Roughly speaking, MSE put more weight on outliers, MAE on the majority. Here, we argue that the Huber loss function is more suitable for CQI prediction, since it combines the benefits of both MSE and MAE. To achieve this, the Huber loss transitions smoothly between MSE and MAE, controlled by a user-defined hyperparameter called delta. However, finding the right balance between sensitivity to small errors (MAE) and robustness to outliers (MSE) by manually choosing the optimal delta is challenging. To address this issue, we propose a novel loss function, named Residual-based Adaptive Huber Loss (RAHL). In RAHL, a learnable residual is added to the delta, enabling the model to adapt based on the distribution of errors in the data. Our approach effectively balances model robustness against outliers while preserving inlier data precision. The widely recognized Long Short-Term Memory (LSTM) model is employed in conjunction with RAHL, showcasing significantly improved results compared to the aforementioned loss functions. The RAHL has enhanced prediction accuracy for datasets A, B, and C by approximately 11%, 14%, and 0.3%, respectively, compared to the Huber loss function; by 22%, 23%, and 17%, respectively, compared to the MSE loss function; and by 5%, 10%, and 5%, respectively, compared to the MAE loss function. The obtained results affirm the superiority of RAHL, offering a promising avenue for enhanced CQI prediction in 5G networks.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-10-07T19:33:32Z
dc.date.available.fl_str_mv 2024-10-07T19:33:32Z
dc.date.issued.fl_str_mv 2024-09-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/20752
identifier_str_mv KAVIANI, Mina. Rahl – a new residual-based adaptive Huber loss function for CQI prediction in 5G networks. 2024. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20752.
url https://repositorio.ufscar.br/handle/20.500.14289/20752
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-ShareAlike 3.0 Brazil
Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-ShareAlike 3.0 Brazil
Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/fcdae615-adfc-407b-854c-af1d8ad4badf/download
https://repositorio.ufscar.br/bitstreams/52879836-ce6b-4165-931a-e8aac2ccd243/download
https://repositorio.ufscar.br/bitstreams/4ae5e4db-20e9-42f6-abce-4be5bc578b81/download
https://repositorio.ufscar.br/bitstreams/cce29817-cf6e-4950-95b3-d34a20d56d21/download
bitstream.checksum.fl_str_mv a45f70a55b932a6da82bf3ad4226bec0
4b50037510e997ae2d94edd08b93c2b6
929ffa09ff4a0ea8fd1884508c132b0b
f337d95da1fce0a22c77480e5e9a7aec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469049843580928