Concrete masonry structures: numerical modeling, seismic performance, and building applications

Bibliographic Details
Main Author: Palhares, Rodolfo de Azevedo
Publication Date: 2025
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da UFSCAR
Download full: https://hdl.handle.net/20.500.14289/22060
Summary: Partially grouted reinforced masonry (PGRM) structures are widely used worldwide, especially in regions with low to moderate seismicity, due to their economic and structural advantages. The nonlinear behavior of PGRM walls is complex, as it is influenced by the interaction between grouted/reinforced and ungrouted regions, which differ in stiffness and introduce non-uniformity in the cross-section. Additionally, factors such as aspect ratio, cross-sectional area, material properties, reinforcement detailing, and axial load significantly influence the nonlinear response. At the building level, further complexities arise from layout configurations, horizontal diaphragm interactions (slabs), and axial load distributions, making it insufficient to rely solely on isolated wall responses to predict overall performance. This thesis addresses these complexities by developing numerical modeling approaches to simulate multi-storey PGRM walls, with the aim of evaluating the seismic performance of building systems and propose practical design recommendations. The research comprises four independent but interconnected studies, each presented as a separate chapter in this thesis. In the first study, a simplified macro-modeling approach is evaluated to simulate the nonlinear in-plane behavior of PGRM walls with vertical reinforcement concentrated at the pier ends. The model, validated based on experimental data from four walls tested by the author’s research group, accurately predicted global behavior, including force-displacement responses and damage mechanisms, while presenting low computational costs. However, further refinement and validation are needed to address additional detailing scenarios, such as cases where vertical reinforcement and grouted regions are not continuous across stories or where reinforcement and grout are distributed non-uniformly along the wall length. In the second study, a unified finite element-based modeling strategy is introduced that combines macro-modeling for grouted regions and simplified micro-modeling for ungrouted regions. This approach facilitates the accurate simulation of various masonry wall typologies, including unreinforced masonry (URM), fully grouted reinforced masonry (FGRM), and PGRM. The numerical model effectively captured the nonlinear response across different experimental cases, and sensitivity analyses identified key parameters that influence numerical accuracy. This study provides valuable insights for future applications in the simulation of in-plane loaded masonry structures. The third study extends the unified modeling approach to investigate the seismic behavior of multi-storey PGRM walls within three-dimensional structural systems. Nonlinear static (pushover) analysis results revealed the significant impact of orthogonal walls (flanges), aspect ratios, axial load levels, and vertical reinforcement arrangements. Flanges have been shown to increase lateral stiffness and force capacity, higher axial loads enhance force capacity but reduce ductility, and a greater number of stories decreases stiffness and increases ultimate displacement. The vertical reinforcement concentrated at the wall ends exhibited an efficiency comparable to uniformly distributed reinforcement, demonstrating it as a suitable alternative. In the fourth study, the seismic performance of two real-world reinforced masonry buildings representative of Canadian (B1) and Brazilian (B2) practices is examined. Using a multi-step methodology that integrates eigenvalue analyses and pushover simulations, the study highlighted the critical role of structural layout in the seismic performance of buildings. Balanced wall distribution and flange contributions significantly improved performance. Notably, building B2, despite lacking explicit seismic design provisions and detailing, outperformed B1 under higher seismic demands, underlining the importance of optimized structural layouts in enhancing seismic performance. Overall, this thesis establishes a comprehensive framework for evaluating and improving the seismic performance of concrete masonry buildings. The proposed modeling approaches, validated based on experimental data, provide support for analyzing masonry systems and informing potential updates to seismic design standards. The findings emphasize the importance of regional adaptations in building design and structural layout optimization to achieve better seismic performance.
id SCAR_cbf95f2d8ef9040ccd9338e0fe0e2ecd
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/22060
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Palhares, Rodolfo de AzevedoParsekian, Guilherme Arishttp://lattes.cnpq.br/7798651726059215Graham Shrive, Nigelhttp://lattes.cnpq.br/6274536481818193https://orcid.org/0000-0002-5271-7447https://orcid.org/0000-0002-5939-20322025-05-15T17:14:35Z2025-05-06PALHARES, Rodolfo de Azevedo. Concrete masonry structures: numerical modeling, seismic performance, and building applications. 2025. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22060.https://hdl.handle.net/20.500.14289/22060Partially grouted reinforced masonry (PGRM) structures are widely used worldwide, especially in regions with low to moderate seismicity, due to their economic and structural advantages. The nonlinear behavior of PGRM walls is complex, as it is influenced by the interaction between grouted/reinforced and ungrouted regions, which differ in stiffness and introduce non-uniformity in the cross-section. Additionally, factors such as aspect ratio, cross-sectional area, material properties, reinforcement detailing, and axial load significantly influence the nonlinear response. At the building level, further complexities arise from layout configurations, horizontal diaphragm interactions (slabs), and axial load distributions, making it insufficient to rely solely on isolated wall responses to predict overall performance. This thesis addresses these complexities by developing numerical modeling approaches to simulate multi-storey PGRM walls, with the aim of evaluating the seismic performance of building systems and propose practical design recommendations. The research comprises four independent but interconnected studies, each presented as a separate chapter in this thesis. In the first study, a simplified macro-modeling approach is evaluated to simulate the nonlinear in-plane behavior of PGRM walls with vertical reinforcement concentrated at the pier ends. The model, validated based on experimental data from four walls tested by the author’s research group, accurately predicted global behavior, including force-displacement responses and damage mechanisms, while presenting low computational costs. However, further refinement and validation are needed to address additional detailing scenarios, such as cases where vertical reinforcement and grouted regions are not continuous across stories or where reinforcement and grout are distributed non-uniformly along the wall length. In the second study, a unified finite element-based modeling strategy is introduced that combines macro-modeling for grouted regions and simplified micro-modeling for ungrouted regions. This approach facilitates the accurate simulation of various masonry wall typologies, including unreinforced masonry (URM), fully grouted reinforced masonry (FGRM), and PGRM. The numerical model effectively captured the nonlinear response across different experimental cases, and sensitivity analyses identified key parameters that influence numerical accuracy. This study provides valuable insights for future applications in the simulation of in-plane loaded masonry structures. The third study extends the unified modeling approach to investigate the seismic behavior of multi-storey PGRM walls within three-dimensional structural systems. Nonlinear static (pushover) analysis results revealed the significant impact of orthogonal walls (flanges), aspect ratios, axial load levels, and vertical reinforcement arrangements. Flanges have been shown to increase lateral stiffness and force capacity, higher axial loads enhance force capacity but reduce ductility, and a greater number of stories decreases stiffness and increases ultimate displacement. The vertical reinforcement concentrated at the wall ends exhibited an efficiency comparable to uniformly distributed reinforcement, demonstrating it as a suitable alternative. In the fourth study, the seismic performance of two real-world reinforced masonry buildings representative of Canadian (B1) and Brazilian (B2) practices is examined. Using a multi-step methodology that integrates eigenvalue analyses and pushover simulations, the study highlighted the critical role of structural layout in the seismic performance of buildings. Balanced wall distribution and flange contributions significantly improved performance. Notably, building B2, despite lacking explicit seismic design provisions and detailing, outperformed B1 under higher seismic demands, underlining the importance of optimized structural layouts in enhancing seismic performance. Overall, this thesis establishes a comprehensive framework for evaluating and improving the seismic performance of concrete masonry buildings. The proposed modeling approaches, validated based on experimental data, provide support for analyzing masonry systems and informing potential updates to seismic design standards. The findings emphasize the importance of regional adaptations in building design and structural layout optimization to achieve better seismic performance.Estruturas de alvenaria estrutural parcialmente grauteadas e armadas (APGA) são amplamente utilizadas em todo o mundo, especialmente em regiões com sismicidade baixa a moderada, devido às suas vantagens econômicas e estruturais. O comportamento não linear de paredes de APGA é complexo, pois é influenciado pela interação entre regiões grauteadas/armadas e não grauteadas, que diferem em rigidez e introduzem não uniformidade na seção transversal. Além disso, fatores como a relação de aspecto, área da seção transversal, propriedades dos materiais, detalhamento das armaduras e nível de carga axial influenciam significativamente a resposta não linear. Em nível de edifício, surgem complexidades adicionais devido às configurações do layout estrutural, interações entre os diafragmas horizontais (lajes) e distribuições de carga axial, tornando insuficiente a análise isolada de paredes para prever o desempenho global. Esta tese aborda essas complexidades por meio do desenvolvimento de abordagens de modelagem numérica para simular o comportamento de paredes de APGA em edifícios de múltiplos pavimentos, com o objetivo de avaliar o desempenho sísmico de sistemas estruturais e propor recomendações práticas de projeto. A pesquisa é composta por quatro estudos independentes, porém interligados, apresentados em capítulos distintos desta tese. No primeiro estudo, é avaliada uma abordagem simplificada de macro modelagem para simular o comportamento não linear no plano de paredes de APGA com armaduras verticais concentradas nas extremidades. O modelo, validado com base em dados experimentais de quatro paredes ensaiadas pelo grupo de pesquisa do autor, previu com precisão o comportamento global, incluindo respostas força-deslocamento e mecanismos de dano, apresentando baixo custo computacional. No entanto, são necessários refinamentos e validações adicionais para considerar cenários de detalhamento mais complexos, como casos em que as armaduras verticais e as regiões grauteadas não são contínuas entre os pavimentos ou quando há distribuições não uniformes de armadura e graute ao longo do comprimento da parede. No segundo estudo, é apresentada uma estratégia unificada de modelagem numérica baseada em elementos finitos, que combina macro modelagem para regiões grauteadas e micro modelagem simplificada para regiões não grauteadas. Esta abordagem facilita a simulação precisa de diferentes tipologias de paredes de alvenaria, incluindo alvenaria não armada (ANA), alvenaria totalmente grauteada e armada (ATGA) e parcialmente grauteada e armada (APGA). O modelo numérico capturou de forma eficaz o comportamento não linear em diferentes casos experimentais, e análises de sensibilidade identificaram parâmetros-chave que influenciam a precisão dos resultados. Este estudo fornece insights valiosos para futuras aplicações na simulação de estruturas de alvenaria submetidas a ações no plano. O terceiro estudo expande a abordagem unificada de modelagem para investigar o comportamento sísmico de paredes de APGA em sistemas estruturais tridimensionais de múltiplos pavimentos. Os resultados das análises estáticas não lineares (pushover) revelaram o impacto significativo de paredes ortogonais (flanges), esbeltez, níveis de carga axial e arranjos de armadura vertical. Verificou-se que flanges aumentam a rigidez lateral e a capacidade de resistência, cargas axiais mais elevadas aumentam a capacidade de força, mas reduzem a ductilidade, e um maior número de pavimentos diminui a rigidez e aumenta o deslocamento último. A concentração de armadura vertical nas extremidades das paredes apresentou eficiência comparável à distribuição uniforme das armaduras, demonstrando ser uma alternativa viável de detalhamento. No quarto estudo, é avaliado o desempenho sísmico de dois edifícios reais de alvenaria estrutural armada representativos das práticas canadense (B1) e brasileira (B2). Utilizando uma metodologia de múltiplas etapas que integra análises de autovalores e simulações pushover, o estudo destacou o papel crítico do layout estrutural no desempenho sísmico dos edifícios. A distribuição balanceada de paredes e a contribuição de flanges melhoraram significativamente o desempenho estrutural. Notavelmente, o edifício B2, apesar de não possuir dimensionamento e detalhamento sísmico explícitos, superou o desempenho do edifício B1 sob maiores demandas sísmicas, ressaltando a importância de layouts estruturais otimizados para melhorar o desempenho sísmico. De forma geral, esta tese estabelece uma estrutura abrangente para avaliar e aprimorar o desempenho sísmico de edifícios de alvenaria estrutural de concreto. As abordagens de modelagem propostas, validadas com base em dados experimentais, fornecem suporte para analisar sistemas de alvenaria e informar possíveis atualizações em normas de projeto sísmico. Os resultados destacam a importância de adaptações regionais no projeto dos edifícios e na otimização do layout estrutural para alcançar melhor desempenho sísmico.engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Civil - PPGECivUFSCarhttps://www.sciencedirect.com/science/article/pii/S2352710223009646?via%3Dihubhttps://www.sciencedirect.com/science/article/pii/S0141029624015785?via%3DihubAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessPartially grouted masonryBuilding systemsNumerical modelsEigenvalue analysesPushover analysisSeismic performanceENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASConcrete masonry structures: numerical modeling, seismic performance, and building applicationsAlvenaria estrutural de concreto: modelagem numérica, desempenho sísmico, e aplicações em edifíciosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALPhd Thesis_Rodolfo de Azevedo Palhares.pdfPhd Thesis_Rodolfo de Azevedo Palhares.pdfapplication/pdf16918259https://repositorio.ufscar.br/bitstreams/19633d8e-fc87-4b5e-9899-05d995d6ae16/download11efc4c1d42f57dfaae915a5c1bf31caMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.ufscar.br/bitstreams/3720a23d-90ef-4bc3-ba45-45edbe63e4dd/downloada9d22297011505482f72aba2008335b7MD52falseAnonymousREADTEXTPhd Thesis_Rodolfo de Azevedo Palhares.pdf.txtPhd Thesis_Rodolfo de Azevedo Palhares.pdf.txtExtracted texttext/plain100470https://repositorio.ufscar.br/bitstreams/094606a9-a9ae-4ff6-b728-af54d39190d1/download4274dcf5d44764d9fa7292f3073f9b88MD53falseAnonymousREADTHUMBNAILPhd Thesis_Rodolfo de Azevedo Palhares.pdf.jpgPhd Thesis_Rodolfo de Azevedo Palhares.pdf.jpgGenerated Thumbnailimage/jpeg4275https://repositorio.ufscar.br/bitstreams/15b3b8f4-11c2-4f21-a523-85753f52e363/download2e620fc03601f19646e7b314c552998aMD54falseAnonymousREAD20.500.14289/220602025-05-16 00:21:28.796http://creativecommons.org/licenses/by-nd/3.0/br/Attribution-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/22060https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-05-16T03:21:28Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Concrete masonry structures: numerical modeling, seismic performance, and building applications
dc.title.alternative.none.fl_str_mv Alvenaria estrutural de concreto: modelagem numérica, desempenho sísmico, e aplicações em edifícios
title Concrete masonry structures: numerical modeling, seismic performance, and building applications
spellingShingle Concrete masonry structures: numerical modeling, seismic performance, and building applications
Palhares, Rodolfo de Azevedo
Partially grouted masonry
Building systems
Numerical models
Eigenvalue analyses
Pushover analysis
Seismic performance
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
title_short Concrete masonry structures: numerical modeling, seismic performance, and building applications
title_full Concrete masonry structures: numerical modeling, seismic performance, and building applications
title_fullStr Concrete masonry structures: numerical modeling, seismic performance, and building applications
title_full_unstemmed Concrete masonry structures: numerical modeling, seismic performance, and building applications
title_sort Concrete masonry structures: numerical modeling, seismic performance, and building applications
author Palhares, Rodolfo de Azevedo
author_facet Palhares, Rodolfo de Azevedo
author_role author
dc.contributor.authorlattes.none.fl_str_mv http://lattes.cnpq.br/6274536481818193
dc.contributor.authororcid.none.fl_str_mv https://orcid.org/0000-0002-5271-7447
dc.contributor.advisor1orcid.none.fl_str_mv https://orcid.org/0000-0002-5939-2032
dc.contributor.author.fl_str_mv Palhares, Rodolfo de Azevedo
dc.contributor.advisor1.fl_str_mv Parsekian, Guilherme Aris
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7798651726059215
dc.contributor.advisor-co1.fl_str_mv Graham Shrive, Nigel
contributor_str_mv Parsekian, Guilherme Aris
Graham Shrive, Nigel
dc.subject.eng.fl_str_mv Partially grouted masonry
Building systems
Numerical models
Eigenvalue analyses
Pushover analysis
Seismic performance
topic Partially grouted masonry
Building systems
Numerical models
Eigenvalue analyses
Pushover analysis
Seismic performance
ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURAS
description Partially grouted reinforced masonry (PGRM) structures are widely used worldwide, especially in regions with low to moderate seismicity, due to their economic and structural advantages. The nonlinear behavior of PGRM walls is complex, as it is influenced by the interaction between grouted/reinforced and ungrouted regions, which differ in stiffness and introduce non-uniformity in the cross-section. Additionally, factors such as aspect ratio, cross-sectional area, material properties, reinforcement detailing, and axial load significantly influence the nonlinear response. At the building level, further complexities arise from layout configurations, horizontal diaphragm interactions (slabs), and axial load distributions, making it insufficient to rely solely on isolated wall responses to predict overall performance. This thesis addresses these complexities by developing numerical modeling approaches to simulate multi-storey PGRM walls, with the aim of evaluating the seismic performance of building systems and propose practical design recommendations. The research comprises four independent but interconnected studies, each presented as a separate chapter in this thesis. In the first study, a simplified macro-modeling approach is evaluated to simulate the nonlinear in-plane behavior of PGRM walls with vertical reinforcement concentrated at the pier ends. The model, validated based on experimental data from four walls tested by the author’s research group, accurately predicted global behavior, including force-displacement responses and damage mechanisms, while presenting low computational costs. However, further refinement and validation are needed to address additional detailing scenarios, such as cases where vertical reinforcement and grouted regions are not continuous across stories or where reinforcement and grout are distributed non-uniformly along the wall length. In the second study, a unified finite element-based modeling strategy is introduced that combines macro-modeling for grouted regions and simplified micro-modeling for ungrouted regions. This approach facilitates the accurate simulation of various masonry wall typologies, including unreinforced masonry (URM), fully grouted reinforced masonry (FGRM), and PGRM. The numerical model effectively captured the nonlinear response across different experimental cases, and sensitivity analyses identified key parameters that influence numerical accuracy. This study provides valuable insights for future applications in the simulation of in-plane loaded masonry structures. The third study extends the unified modeling approach to investigate the seismic behavior of multi-storey PGRM walls within three-dimensional structural systems. Nonlinear static (pushover) analysis results revealed the significant impact of orthogonal walls (flanges), aspect ratios, axial load levels, and vertical reinforcement arrangements. Flanges have been shown to increase lateral stiffness and force capacity, higher axial loads enhance force capacity but reduce ductility, and a greater number of stories decreases stiffness and increases ultimate displacement. The vertical reinforcement concentrated at the wall ends exhibited an efficiency comparable to uniformly distributed reinforcement, demonstrating it as a suitable alternative. In the fourth study, the seismic performance of two real-world reinforced masonry buildings representative of Canadian (B1) and Brazilian (B2) practices is examined. Using a multi-step methodology that integrates eigenvalue analyses and pushover simulations, the study highlighted the critical role of structural layout in the seismic performance of buildings. Balanced wall distribution and flange contributions significantly improved performance. Notably, building B2, despite lacking explicit seismic design provisions and detailing, outperformed B1 under higher seismic demands, underlining the importance of optimized structural layouts in enhancing seismic performance. Overall, this thesis establishes a comprehensive framework for evaluating and improving the seismic performance of concrete masonry buildings. The proposed modeling approaches, validated based on experimental data, provide support for analyzing masonry systems and informing potential updates to seismic design standards. The findings emphasize the importance of regional adaptations in building design and structural layout optimization to achieve better seismic performance.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-05-15T17:14:35Z
dc.date.issued.fl_str_mv 2025-05-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PALHARES, Rodolfo de Azevedo. Concrete masonry structures: numerical modeling, seismic performance, and building applications. 2025. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22060.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.14289/22060
identifier_str_mv PALHARES, Rodolfo de Azevedo. Concrete masonry structures: numerical modeling, seismic performance, and building applications. 2025. Tese (Doutorado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2025. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/22060.
url https://hdl.handle.net/20.500.14289/22060
dc.language.iso.fl_str_mv eng
language eng
dc.relation.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352710223009646?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0141029624015785?via%3Dihub
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Civil - PPGECiv
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/19633d8e-fc87-4b5e-9899-05d995d6ae16/download
https://repositorio.ufscar.br/bitstreams/3720a23d-90ef-4bc3-ba45-45edbe63e4dd/download
https://repositorio.ufscar.br/bitstreams/094606a9-a9ae-4ff6-b728-af54d39190d1/download
https://repositorio.ufscar.br/bitstreams/15b3b8f4-11c2-4f21-a523-85753f52e363/download
bitstream.checksum.fl_str_mv 11efc4c1d42f57dfaae915a5c1bf31ca
a9d22297011505482f72aba2008335b7
4274dcf5d44764d9fa7292f3073f9b88
2e620fc03601f19646e7b314c552998a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469086241751040