Classificação das álgebras de Lie semi-simples complexas e reais
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Bachelor thesis |
Language: | por |
Source: | Repositório Institucional da UFSCAR |
Download full: | https://repositorio.ufscar.br/handle/20.500.14289/20876 |
Summary: | In this work, we present the classification of real and complex semisimple Lie algebras. Actually, we only introduce the real case, while we show the complete classification in the complex setting. In order to achieve this aim, we present basic concepts, passing through category theory, a little of modules over rings theory, homological algebra and the basic theory of Lie algebras. Afterwards, we summarize the theory of semisimple Lie algebras, that constitute the main topic of the present work. After this, we introduce the cohomology of Lie algebras, in order to prove two important theorems (Weyl’s Theorem and Levi-Malcev Theorem), which help us to obtain the classification, as well motivate us to do so. Finally, we show the classification of complex semisimple Lie algebras and we apply it to realize the analogous classification in the real framework. |
id |
SCAR_6c9f3c94b295820b5afdbc0c3dae869f |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/20876 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Ferreira, Vitor SchiavuzzoRuffino, Fábio Ferrarihttp://lattes.cnpq.br/25121071887811592024-10-29T14:20:27Z2024-10-29T14:20:27Z2024-02-09FERREIRA, Vitor Schiavuzzo. Classificação das álgebras de Lie semi-simples complexas e reais. 2024. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20876.https://repositorio.ufscar.br/handle/20.500.14289/20876In this work, we present the classification of real and complex semisimple Lie algebras. Actually, we only introduce the real case, while we show the complete classification in the complex setting. In order to achieve this aim, we present basic concepts, passing through category theory, a little of modules over rings theory, homological algebra and the basic theory of Lie algebras. Afterwards, we summarize the theory of semisimple Lie algebras, that constitute the main topic of the present work. After this, we introduce the cohomology of Lie algebras, in order to prove two important theorems (Weyl’s Theorem and Levi-Malcev Theorem), which help us to obtain the classification, as well motivate us to do so. Finally, we show the classification of complex semisimple Lie algebras and we apply it to realize the analogous classification in the real framework.Neste trabalho, apresentaremos a classificação das álgebras de Lie semi-simples complexas e reais. Na verdade, apenas introduziremos o caso real, enquanto faremos completamente o caso complexo. Para tal tarefa, apresentaremos os conceitos iniciais, passando por teoria de categorias, um pouco da teoria de módulos sobre anéis, álgebra homológica e o básico da teoria das álgebras de Lie. Em seguida, focaremos em apresentar a teoria dos objetos que constituem o objetivo principal deste trabalho: as álgebras de Lie semi-simples. Após isso, será introduzido a cohomologia das álgebras de Lie, afim de provarmos dois teoremas importantes (Teorema de Weyl e de Levi-Malcev), que nos ajudam a obter tal classificação, bem como nos motiva a faze-la. Finalmente, mostraremos a classificação das álgebras de Lie complexas e a usaremos para realizar a classificação análoga no contexto real.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus São CarlosMatemática - MUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessÁlgebras de LieClassificaçãoCohomologiaLie algebrasClassificationCohomologyCIENCIAS EXATAS E DA TERRA::MATEMATICAClassificação das álgebras de Lie semi-simples complexas e reaisClassification of complex and real semisimple Lie algebras"info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXTMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdf.txtMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdf.txtExtracted texttext/plain107418https://repositorio.ufscar.br/bitstreams/12d99f10-24ba-4b64-b591-4f917be8ac9c/download0e8f5d3133824a23d9580c873ff4d22fMD53falseAnonymousREADTHUMBNAILMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdf.jpgMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdf.jpgGenerated Thumbnailimage/jpeg5452https://repositorio.ufscar.br/bitstreams/1b9a0ce0-3f40-45a2-a1c0-ab6aeba65b46/download0bc1be23763e5492eb1d38c31f423a69MD54falseAnonymousREADORIGINALMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdfMonografia-TCC2-Vitor Schiavuzzo Ferreira (Versão final).pdfapplication/pdf831786https://repositorio.ufscar.br/bitstreams/5c79cf98-5dd3-4dd8-ab3c-b8629668655d/downloadb9e3a77b67825c766df9c522128bdc24MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repositorio.ufscar.br/bitstreams/fca93f32-7ad9-4d91-9a33-8f235420556c/downloadf337d95da1fce0a22c77480e5e9a7aecMD52falseAnonymousREAD20.500.14289/208762025-02-06 03:42:02.931http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/20876https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T06:42:02Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Classificação das álgebras de Lie semi-simples complexas e reais |
dc.title.alternative.eng.fl_str_mv |
Classification of complex and real semisimple Lie algebras" |
title |
Classificação das álgebras de Lie semi-simples complexas e reais |
spellingShingle |
Classificação das álgebras de Lie semi-simples complexas e reais Ferreira, Vitor Schiavuzzo Álgebras de Lie Classificação Cohomologia Lie algebras Classification Cohomology CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Classificação das álgebras de Lie semi-simples complexas e reais |
title_full |
Classificação das álgebras de Lie semi-simples complexas e reais |
title_fullStr |
Classificação das álgebras de Lie semi-simples complexas e reais |
title_full_unstemmed |
Classificação das álgebras de Lie semi-simples complexas e reais |
title_sort |
Classificação das álgebras de Lie semi-simples complexas e reais |
author |
Ferreira, Vitor Schiavuzzo |
author_facet |
Ferreira, Vitor Schiavuzzo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Vitor Schiavuzzo |
dc.contributor.advisor1.fl_str_mv |
Ruffino, Fábio Ferrari |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2512107188781159 |
contributor_str_mv |
Ruffino, Fábio Ferrari |
dc.subject.por.fl_str_mv |
Álgebras de Lie Classificação Cohomologia |
topic |
Álgebras de Lie Classificação Cohomologia Lie algebras Classification Cohomology CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Lie algebras Classification Cohomology |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we present the classification of real and complex semisimple Lie algebras. Actually, we only introduce the real case, while we show the complete classification in the complex setting. In order to achieve this aim, we present basic concepts, passing through category theory, a little of modules over rings theory, homological algebra and the basic theory of Lie algebras. Afterwards, we summarize the theory of semisimple Lie algebras, that constitute the main topic of the present work. After this, we introduce the cohomology of Lie algebras, in order to prove two important theorems (Weyl’s Theorem and Levi-Malcev Theorem), which help us to obtain the classification, as well motivate us to do so. Finally, we show the classification of complex semisimple Lie algebras and we apply it to realize the analogous classification in the real framework. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-10-29T14:20:27Z |
dc.date.available.fl_str_mv |
2024-10-29T14:20:27Z |
dc.date.issued.fl_str_mv |
2024-02-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERREIRA, Vitor Schiavuzzo. Classificação das álgebras de Lie semi-simples complexas e reais. 2024. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20876. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/20876 |
identifier_str_mv |
FERREIRA, Vitor Schiavuzzo. Classificação das álgebras de Lie semi-simples complexas e reais. 2024. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/20876. |
url |
https://repositorio.ufscar.br/handle/20.500.14289/20876 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos Matemática - M |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos Matemática - M |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/12d99f10-24ba-4b64-b591-4f917be8ac9c/download https://repositorio.ufscar.br/bitstreams/1b9a0ce0-3f40-45a2-a1c0-ab6aeba65b46/download https://repositorio.ufscar.br/bitstreams/5c79cf98-5dd3-4dd8-ab3c-b8629668655d/download https://repositorio.ufscar.br/bitstreams/fca93f32-7ad9-4d91-9a33-8f235420556c/download |
bitstream.checksum.fl_str_mv |
0e8f5d3133824a23d9580c873ff4d22f 0bc1be23763e5492eb1d38c31f423a69 b9e3a77b67825c766df9c522128bdc24 f337d95da1fce0a22c77480e5e9a7aec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
_version_ |
1834469081814663168 |