Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI

Bibliographic Details
Main Author: Silva, Lucas Cardoso
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/14916
Summary: Machine learning is a term linked to data science, a multidisciplinary area that encom- passes knowledge of computer science, mathematics, and domain experience. Given this multidisciplinary nature, a wide variety of challenges are presented to its practitioners, as a wide range of skills is required to train models and put them into production. Part of these challenges can be solved with the help of machine learning tools and platforms. In this context, the Apache Marvin-AI is an open-source machine learning platform that offers a standardized way to develop and put machine learning models into production. While Apache Marvin-AI has a lot to offer for novices and data scientists who do not have the software engineering skills to deal with the aforementioned issues, it lacks features desired by more advanced users. To solve this problem, an architectural evolution and evaluation was carried out. The process was guided by a simplified version of ATAM (Architecture Tradeoff Analysis Method), adapted to work on a distributed open-source development en- vironment. The results of this process were analyzed in four different ways: (i) source code static analysis; (ii) feedback from stakeholders; (iii) taxonomy analysis to assess the ma- turity of the developed solutions; and (iv) an assessment of the new monitoring features. Overall, the process of designing, implementing, and evaluating the new architecture was deemed successful by all four independent evaluations, and the lessons learned are impor- tant contributions from this work.
id SCAR_67925ce53d49224dc2c8a96dfe6d7f11
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/14916
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Silva, Lucas CardosoSilva, Diego Furtadohttp://lattes.cnpq.br/7662777934692986http://lattes.cnpq.br/5176279403275422ddafa45b-b7ff-47ff-bd3b-75b063ca7f5b2021-09-21T13:27:32Z2021-09-21T13:27:32Z2021-07-01SILVA, Lucas Cardoso. Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14916.https://repositorio.ufscar.br/handle/20.500.14289/14916Machine learning is a term linked to data science, a multidisciplinary area that encom- passes knowledge of computer science, mathematics, and domain experience. Given this multidisciplinary nature, a wide variety of challenges are presented to its practitioners, as a wide range of skills is required to train models and put them into production. Part of these challenges can be solved with the help of machine learning tools and platforms. In this context, the Apache Marvin-AI is an open-source machine learning platform that offers a standardized way to develop and put machine learning models into production. While Apache Marvin-AI has a lot to offer for novices and data scientists who do not have the software engineering skills to deal with the aforementioned issues, it lacks features desired by more advanced users. To solve this problem, an architectural evolution and evaluation was carried out. The process was guided by a simplified version of ATAM (Architecture Tradeoff Analysis Method), adapted to work on a distributed open-source development en- vironment. The results of this process were analyzed in four different ways: (i) source code static analysis; (ii) feedback from stakeholders; (iii) taxonomy analysis to assess the ma- turity of the developed solutions; and (iv) an assessment of the new monitoring features. Overall, the process of designing, implementing, and evaluating the new architecture was deemed successful by all four independent evaluations, and the lessons learned are impor- tant contributions from this work.Aprendizado de máquina é um termo vinculado à ciência de dados, uma área multidis- ciplinar que engloba conhecimentos da ciência da computação, matemática e experiência em um domínio. Dada esta natureza multidisciplinar, uma grande variedade de desafios se apresenta para seus praticantes, visto que uma vasta gama de habilidades é necessária para treinar modelos e colocá-los em produção. Parte desses desafios pode ser resolvida com a ajuda de ferramentas e plataformas de aprendizado de máquina. Nesse contexto, a plataforma de aprendizado de máquina de código aberto Apache Marvin-AI oferece uma maneira padronizada de desenvolver e colocar modelos de aprendizado de máquina em pro- dução. Embora o Apache Marvin-AI tenha muito a oferecer para iniciantes e cientistas de dados que não possuem as habilidades de engenharia de software para lidar com os prob- lemas mencionados anteriormente, faltam recursos desejados por usuários mais avançados. Para resolver este problema, foi realizada a evolução e avaliação arquitetural do Marvin- AI. O processo foi guiado por uma versão simplificada do ATAM (Architecture Tradeoff Analysis Method), que foi adaptada para funcionar em um ambiente de desenvolvimento distribuído de código aberto. O resultado do processo foi avaliado de quatro formas distin- tas: (i) análise estática de código-fonte; (ii) feedback das partes interessadas; (iii) a análise de taxonomia para avaliar a maturidade das soluções desenvolvidas; e (iv) uma avaliação das novas features de monitoramento. No geral, o processo de concepção, implementação e avaliação da nova arquitetura foi considerado bem-sucedido por todas as quatro avaliações independentes, e as lições aprendidas constituem importantes contribuições deste trabalho.OutraB2W Digital: 23112.000186/2020-97porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessArchitecture evaluationMLOpsATAMAvaliação arquiteturalCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWAREArchitectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AIRedesenho e avaliação arquitetural de uma plataforma de MLOps de código aberto: um estudo de caso do Apache Marvin-AIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6006009185a24d-3ee1-48a1-82f2-dad58a6b653ereponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALdissertacao_final.pdfdissertacao_final.pdfapplication/pdf883887https://repositorio.ufscar.br/bitstreams/59477c8e-17fb-4c84-a36b-24f55cfe6d73/download465739b371c9006fd06ac1d0f23add18MD51trueAnonymousREADCarta Diego assinada.pdfCarta Diego assinada.pdfCarta Orientadorapplication/pdf97033https://repositorio.ufscar.br/bitstreams/3dcb8224-1c30-4a78-9bbf-e1aac06dec7d/download90de44bb1776be5d5162419ec5aff6e0MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/29b3ba35-3d06-45ba-be9d-ab9eb6ee8fba/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREADTEXTdissertacao_final.pdf.txtdissertacao_final.pdf.txtExtracted texttext/plain145451https://repositorio.ufscar.br/bitstreams/85f01c35-448e-4259-b9a6-31f7a0d7c83a/downloade0ebf66a06cf59cbd2f39e184ef99699MD59falseAnonymousREADCarta Diego assinada.pdf.txtCarta Diego assinada.pdf.txtExtracted texttext/plain1510https://repositorio.ufscar.br/bitstreams/6f7a15a5-6ff6-40fa-a6bb-d45efc834097/downloadff0c03209f62667e27d902726d84744cMD511falseTHUMBNAILdissertacao_final.pdf.jpgdissertacao_final.pdf.jpgIM Thumbnailimage/jpeg8234https://repositorio.ufscar.br/bitstreams/19e3b605-7c86-4de7-85b9-b1ae47790d01/downloada83e7c0875a1d86c361ef1bb9cc62d7cMD510falseAnonymousREADCarta Diego assinada.pdf.jpgCarta Diego assinada.pdf.jpgIM Thumbnailimage/jpeg12874https://repositorio.ufscar.br/bitstreams/74bfd96d-dc92-4cba-8b18-cdc89cad2b2e/downloade1e0ea4c1387e7139915cbe31d204eaeMD512false20.500.14289/149162025-02-05 20:11:30.22http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14916https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:11:30Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
dc.title.alternative.por.fl_str_mv Redesenho e avaliação arquitetural de uma plataforma de MLOps de código aberto: um estudo de caso do Apache Marvin-AI
title Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
spellingShingle Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
Silva, Lucas Cardoso
Architecture evaluation
MLOps
ATAM
Avaliação arquitetural
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWARE
title_short Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
title_full Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
title_fullStr Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
title_full_unstemmed Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
title_sort Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI
author Silva, Lucas Cardoso
author_facet Silva, Lucas Cardoso
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5176279403275422
dc.contributor.author.fl_str_mv Silva, Lucas Cardoso
dc.contributor.advisor1.fl_str_mv Silva, Diego Furtado
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7662777934692986
dc.contributor.authorID.fl_str_mv ddafa45b-b7ff-47ff-bd3b-75b063ca7f5b
contributor_str_mv Silva, Diego Furtado
dc.subject.eng.fl_str_mv Architecture evaluation
topic Architecture evaluation
MLOps
ATAM
Avaliação arquitetural
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWARE
dc.subject.por.fl_str_mv MLOps
ATAM
Avaliação arquitetural
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWARE
description Machine learning is a term linked to data science, a multidisciplinary area that encom- passes knowledge of computer science, mathematics, and domain experience. Given this multidisciplinary nature, a wide variety of challenges are presented to its practitioners, as a wide range of skills is required to train models and put them into production. Part of these challenges can be solved with the help of machine learning tools and platforms. In this context, the Apache Marvin-AI is an open-source machine learning platform that offers a standardized way to develop and put machine learning models into production. While Apache Marvin-AI has a lot to offer for novices and data scientists who do not have the software engineering skills to deal with the aforementioned issues, it lacks features desired by more advanced users. To solve this problem, an architectural evolution and evaluation was carried out. The process was guided by a simplified version of ATAM (Architecture Tradeoff Analysis Method), adapted to work on a distributed open-source development en- vironment. The results of this process were analyzed in four different ways: (i) source code static analysis; (ii) feedback from stakeholders; (iii) taxonomy analysis to assess the ma- turity of the developed solutions; and (iv) an assessment of the new monitoring features. Overall, the process of designing, implementing, and evaluating the new architecture was deemed successful by all four independent evaluations, and the lessons learned are impor- tant contributions from this work.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-21T13:27:32Z
dc.date.available.fl_str_mv 2021-09-21T13:27:32Z
dc.date.issued.fl_str_mv 2021-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Lucas Cardoso. Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14916.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/14916
identifier_str_mv SILVA, Lucas Cardoso. Architectural redesign and evaluation of an open source MLOps platform: a case study of Apache Marvin-AI. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14916.
url https://repositorio.ufscar.br/handle/20.500.14289/14916
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 9185a24d-3ee1-48a1-82f2-dad58a6b653e
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/59477c8e-17fb-4c84-a36b-24f55cfe6d73/download
https://repositorio.ufscar.br/bitstreams/3dcb8224-1c30-4a78-9bbf-e1aac06dec7d/download
https://repositorio.ufscar.br/bitstreams/29b3ba35-3d06-45ba-be9d-ab9eb6ee8fba/download
https://repositorio.ufscar.br/bitstreams/85f01c35-448e-4259-b9a6-31f7a0d7c83a/download
https://repositorio.ufscar.br/bitstreams/6f7a15a5-6ff6-40fa-a6bb-d45efc834097/download
https://repositorio.ufscar.br/bitstreams/19e3b605-7c86-4de7-85b9-b1ae47790d01/download
https://repositorio.ufscar.br/bitstreams/74bfd96d-dc92-4cba-8b18-cdc89cad2b2e/download
bitstream.checksum.fl_str_mv 465739b371c9006fd06ac1d0f23add18
90de44bb1776be5d5162419ec5aff6e0
e39d27027a6cc9cb039ad269a5db8e34
e0ebf66a06cf59cbd2f39e184ef99699
ff0c03209f62667e27d902726d84744c
a83e7c0875a1d86c361ef1bb9cc62d7c
e1e0ea4c1387e7139915cbe31d204eae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834468914330861568