IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM

Detalhes bibliográficos
Autor(a) principal: Yang,Guoliang
Data de Publicação: 2018
Outros Autores: Xu,Nan, Hong,Zhiyang
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000500783
Resumo: ABSTRACT It is difficult for humans to recognize recessive diseases in navel oranges. Therefore, deep neural networks are applied to plant disease identification. To improve the feature extraction ability of convolutional neural networks, the Parameter Exponential Nonlinear Activation Unit (PENLU) is proposed to replace the activated function of the neural network. This function not only adds multiple parameters but also brings better generalization ability to the neural network. In addition, the proposed function parameters can be updated by the inverse Stochastic Gradient Descent (SGD) algorithm, which has unparalleled advantages over the existing activated functions. The Residual Network (ResNet), improved by PENLU, is applied to navel orange lesion recognition and achieves the most advanced accuracy compared with traditional lesion recognition methods. It is worth mentioning that the data set of navel orange leaf images proposed in this paper will provide samples for subsequent research. The code and model are available at the website https://github.com/xncaffe/caffe_penlu.
id SBEA-1_a06ae964893e0a495dd5cc78f454858d
oai_identifier_str oai:scielo:S0100-69162018000500783
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHMneural networksactivation functionplant image classificationlesion detectionABSTRACT It is difficult for humans to recognize recessive diseases in navel oranges. Therefore, deep neural networks are applied to plant disease identification. To improve the feature extraction ability of convolutional neural networks, the Parameter Exponential Nonlinear Activation Unit (PENLU) is proposed to replace the activated function of the neural network. This function not only adds multiple parameters but also brings better generalization ability to the neural network. In addition, the proposed function parameters can be updated by the inverse Stochastic Gradient Descent (SGD) algorithm, which has unparalleled advantages over the existing activated functions. The Residual Network (ResNet), improved by PENLU, is applied to navel orange lesion recognition and achieves the most advanced accuracy compared with traditional lesion recognition methods. It is worth mentioning that the data set of navel orange leaf images proposed in this paper will provide samples for subsequent research. The code and model are available at the website https://github.com/xncaffe/caffe_penlu.Associação Brasileira de Engenharia Agrícola2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000500783Engenharia Agrícola v.38 n.5 2018reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v38n5p783-796/2018info:eu-repo/semantics/openAccessYang,GuoliangXu,NanHong,Zhiyangeng2018-10-29T00:00:00Zoai:scielo:S0100-69162018000500783Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2018-10-29T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
title IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
spellingShingle IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
Yang,Guoliang
neural networks
activation function
plant image classification
lesion detection
title_short IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
title_full IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
title_fullStr IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
title_full_unstemmed IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
title_sort IDENTIFICATION OF NAVEL ORANGE LESIONS BY NONLINEAR DEEP LEARNING ALGORITHM
author Yang,Guoliang
author_facet Yang,Guoliang
Xu,Nan
Hong,Zhiyang
author_role author
author2 Xu,Nan
Hong,Zhiyang
author2_role author
author
dc.contributor.author.fl_str_mv Yang,Guoliang
Xu,Nan
Hong,Zhiyang
dc.subject.por.fl_str_mv neural networks
activation function
plant image classification
lesion detection
topic neural networks
activation function
plant image classification
lesion detection
description ABSTRACT It is difficult for humans to recognize recessive diseases in navel oranges. Therefore, deep neural networks are applied to plant disease identification. To improve the feature extraction ability of convolutional neural networks, the Parameter Exponential Nonlinear Activation Unit (PENLU) is proposed to replace the activated function of the neural network. This function not only adds multiple parameters but also brings better generalization ability to the neural network. In addition, the proposed function parameters can be updated by the inverse Stochastic Gradient Descent (SGD) algorithm, which has unparalleled advantages over the existing activated functions. The Residual Network (ResNet), improved by PENLU, is applied to navel orange lesion recognition and achieves the most advanced accuracy compared with traditional lesion recognition methods. It is worth mentioning that the data set of navel orange leaf images proposed in this paper will provide samples for subsequent research. The code and model are available at the website https://github.com/xncaffe/caffe_penlu.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000500783
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000500783
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v38n5p783-796/2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.38 n.5 2018
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126274026864640