A study of the metallic silver dissolution with the MEA-NH3-Cu system

Bibliographic Details
Main Author: Reyes-Sandoval,Edith
Publication Date: 2018
Other Authors: Fuentes-Aceituno,Juan Carlos
Format: Article
Language: eng
Source: Matéria (Rio de Janeiro. Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000200413
Summary: ABSTRACT Leaching of silver from minerals has been studied for decades. Recently, research has been focused on the substitution of cyanide (because of its high toxicity) from hydrometallurgical operations. In this sense, the development of alternative-green leaching solutions for the recovery of metallic silver from minerals and urban mines is necessary. In this research, a thermodynamic-kinetic study of the alternative system “monoethanolamine (MEA)-ammonium sulfate-cupric sulfate” was performed for the dissolution of metallic silver, varying the pH and the cupric ion concentration at room temperature. Furthermore, this research aims to evaluate the silver dissolution behavior at a pH lower than 10.2, elucidating the rate determining step of the silver dissolution process at these conditions of pH and cupric ion concentration. Thermodynamic results confirm that the MEA and NH3 can complex silver generating the species: Ag(MEA)2+, AgMEA-, Ag(NH3)2+, AgNH3+ respectively. It was evaluated the effect of varying the pH (8.8, 9.9 and 9) and the cupric sulfate concentration (0.1, 0.15 and, 0.2 M at pH 9) on the kinetics of silver dissolution. The results revealed, the possibility to leach a 39% of silver using a leaching solution containing: 0.15 M cupric sulfate, 0.05 M MEA and 0.4 M ammonium sulfate at pH 9. The kinetic analysis showed that the silver dissolution is controlled by the diffusion of fluid species through a porous layer composed of copper oxides, which was ratified by SEM and EDS analysis. Finally the present paper, open the possibility to optimize the molar ratio MEA:NH3 to maximize the silver dissolution kinetics.
id RLAM-1_1a96c2f4352bac1336bfe108765b0c11
oai_identifier_str oai:scielo:S1517-70762018000200413
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling A study of the metallic silver dissolution with the MEA-NH3-Cu systemLeachingmetallic silverMEAammoniumABSTRACT Leaching of silver from minerals has been studied for decades. Recently, research has been focused on the substitution of cyanide (because of its high toxicity) from hydrometallurgical operations. In this sense, the development of alternative-green leaching solutions for the recovery of metallic silver from minerals and urban mines is necessary. In this research, a thermodynamic-kinetic study of the alternative system “monoethanolamine (MEA)-ammonium sulfate-cupric sulfate” was performed for the dissolution of metallic silver, varying the pH and the cupric ion concentration at room temperature. Furthermore, this research aims to evaluate the silver dissolution behavior at a pH lower than 10.2, elucidating the rate determining step of the silver dissolution process at these conditions of pH and cupric ion concentration. Thermodynamic results confirm that the MEA and NH3 can complex silver generating the species: Ag(MEA)2+, AgMEA-, Ag(NH3)2+, AgNH3+ respectively. It was evaluated the effect of varying the pH (8.8, 9.9 and 9) and the cupric sulfate concentration (0.1, 0.15 and, 0.2 M at pH 9) on the kinetics of silver dissolution. The results revealed, the possibility to leach a 39% of silver using a leaching solution containing: 0.15 M cupric sulfate, 0.05 M MEA and 0.4 M ammonium sulfate at pH 9. The kinetic analysis showed that the silver dissolution is controlled by the diffusion of fluid species through a porous layer composed of copper oxides, which was ratified by SEM and EDS analysis. Finally the present paper, open the possibility to optimize the molar ratio MEA:NH3 to maximize the silver dissolution kinetics.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000200413Matéria (Rio de Janeiro) v.23 n.2 2018reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620180002.0341info:eu-repo/semantics/openAccessReyes-Sandoval,EdithFuentes-Aceituno,Juan Carloseng2018-07-19T00:00:00Zoai:scielo:S1517-70762018000200413Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2018-07-19T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv A study of the metallic silver dissolution with the MEA-NH3-Cu system
title A study of the metallic silver dissolution with the MEA-NH3-Cu system
spellingShingle A study of the metallic silver dissolution with the MEA-NH3-Cu system
Reyes-Sandoval,Edith
Leaching
metallic silver
MEA
ammonium
title_short A study of the metallic silver dissolution with the MEA-NH3-Cu system
title_full A study of the metallic silver dissolution with the MEA-NH3-Cu system
title_fullStr A study of the metallic silver dissolution with the MEA-NH3-Cu system
title_full_unstemmed A study of the metallic silver dissolution with the MEA-NH3-Cu system
title_sort A study of the metallic silver dissolution with the MEA-NH3-Cu system
author Reyes-Sandoval,Edith
author_facet Reyes-Sandoval,Edith
Fuentes-Aceituno,Juan Carlos
author_role author
author2 Fuentes-Aceituno,Juan Carlos
author2_role author
dc.contributor.author.fl_str_mv Reyes-Sandoval,Edith
Fuentes-Aceituno,Juan Carlos
dc.subject.por.fl_str_mv Leaching
metallic silver
MEA
ammonium
topic Leaching
metallic silver
MEA
ammonium
description ABSTRACT Leaching of silver from minerals has been studied for decades. Recently, research has been focused on the substitution of cyanide (because of its high toxicity) from hydrometallurgical operations. In this sense, the development of alternative-green leaching solutions for the recovery of metallic silver from minerals and urban mines is necessary. In this research, a thermodynamic-kinetic study of the alternative system “monoethanolamine (MEA)-ammonium sulfate-cupric sulfate” was performed for the dissolution of metallic silver, varying the pH and the cupric ion concentration at room temperature. Furthermore, this research aims to evaluate the silver dissolution behavior at a pH lower than 10.2, elucidating the rate determining step of the silver dissolution process at these conditions of pH and cupric ion concentration. Thermodynamic results confirm that the MEA and NH3 can complex silver generating the species: Ag(MEA)2+, AgMEA-, Ag(NH3)2+, AgNH3+ respectively. It was evaluated the effect of varying the pH (8.8, 9.9 and 9) and the cupric sulfate concentration (0.1, 0.15 and, 0.2 M at pH 9) on the kinetics of silver dissolution. The results revealed, the possibility to leach a 39% of silver using a leaching solution containing: 0.15 M cupric sulfate, 0.05 M MEA and 0.4 M ammonium sulfate at pH 9. The kinetic analysis showed that the silver dissolution is controlled by the diffusion of fluid species through a porous layer composed of copper oxides, which was ratified by SEM and EDS analysis. Finally the present paper, open the possibility to optimize the molar ratio MEA:NH3 to maximize the silver dissolution kinetics.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000200413
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762018000200413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s1517-707620180002.0341
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.23 n.2 2018
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1827859079890993152