Investigating the expression of genes and proteins in Glioblastoma during hypoxia

Detalhes bibliográficos
Autor(a) principal: Monteiro, Ana Rita Alves Pereira de Ferreira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/13565
Resumo: Glioblastoma multiforme (GBM), grade IV Astrocytoma, is the most common and deadly form of brain cancer. Despite the low incidence rate (3.2 per 100.000 people), patient’s median survival is only 14 months. Notwithstanding all new diagnostic tools, GBM remains a therapeutic challenge, being extremely difficult to prevent recurrence. Therefore, it is essential to conduct research in order to understand the molecular pathways in the core of GBM aggressiveness and swift evolution. GBM is often characterized by hypoxic regions where oxygen levels are extremely low. As a natural consequence of tumour growth and expansion, some areas of the tumour become distanced from the blood vessels and consequently, from the oxygen supply. In such a critical environment, cells activate pro-survival and malignancy mechanisms such as the metabolic switch, invasion and angiogenesis. Hence we investigated the expression of genes featuring these survival mechanisms and identified a panel of hypoxia-driven-malignancy markers. To conduct this study, two GBM patient´s biopsy-derived cell lines (UP-029 and SEBTA-023) were used and cultured under hypoxic conditions for a selected set of time-points (time-course). To characterize the hypoxic response of these cells, hypoxia profiler microarrays were ran for normoxia, 6 and 48 hours of hypoxia (1% O2). Once identified the induced and repressed genes, these were analyzed and validated through qRT-PCR assays. Finally, western-blot analysis was performed to detect target proteins and correlate with the previously obtained gene expression data. Our study validated ANGPTL4, PIGF, VEGFA, GLUT1, PFKB4, PFKB3, BNIP3, DDIT4, NDRG1 and CAIX genes as relevant in GBM’s hypoxia-mediated response. We also pointed out MXI1, HNF4A genes as likely significant factors in GBM hypoxia. Furthermore, we hypothesize PFKB3 as an adaptive resistance marker in GBM and the repression of TFRC as required mechanism for GBM progression.
id RCAP_faa706d6f40a56ed98726a19d0ce4045
oai_identifier_str oai:sapientia.ualg.pt:10400.1/13565
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Investigating the expression of genes and proteins in Glioblastoma during hypoxiaGlioblastoma (GBM)HipóxiaAngiogéneseGlicóliseInvasãoGlioblastoma multiforme (GBM), grade IV Astrocytoma, is the most common and deadly form of brain cancer. Despite the low incidence rate (3.2 per 100.000 people), patient’s median survival is only 14 months. Notwithstanding all new diagnostic tools, GBM remains a therapeutic challenge, being extremely difficult to prevent recurrence. Therefore, it is essential to conduct research in order to understand the molecular pathways in the core of GBM aggressiveness and swift evolution. GBM is often characterized by hypoxic regions where oxygen levels are extremely low. As a natural consequence of tumour growth and expansion, some areas of the tumour become distanced from the blood vessels and consequently, from the oxygen supply. In such a critical environment, cells activate pro-survival and malignancy mechanisms such as the metabolic switch, invasion and angiogenesis. Hence we investigated the expression of genes featuring these survival mechanisms and identified a panel of hypoxia-driven-malignancy markers. To conduct this study, two GBM patient´s biopsy-derived cell lines (UP-029 and SEBTA-023) were used and cultured under hypoxic conditions for a selected set of time-points (time-course). To characterize the hypoxic response of these cells, hypoxia profiler microarrays were ran for normoxia, 6 and 48 hours of hypoxia (1% O2). Once identified the induced and repressed genes, these were analyzed and validated through qRT-PCR assays. Finally, western-blot analysis was performed to detect target proteins and correlate with the previously obtained gene expression data. Our study validated ANGPTL4, PIGF, VEGFA, GLUT1, PFKB4, PFKB3, BNIP3, DDIT4, NDRG1 and CAIX genes as relevant in GBM’s hypoxia-mediated response. We also pointed out MXI1, HNF4A genes as likely significant factors in GBM hypoxia. Furthermore, we hypothesize PFKB3 as an adaptive resistance marker in GBM and the repression of TFRC as required mechanism for GBM progression.Madureira, PatríciaMaia, Ana TeresaSapientiaMonteiro, Ana Rita Alves Pereira de Ferreira2020-03-09T14:24:13Z2019-01-252019-01-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.1/13565urn:tid:202231070enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:38:28Zoai:sapientia.ualg.pt:10400.1/13565Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:29:45.534901Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Investigating the expression of genes and proteins in Glioblastoma during hypoxia
title Investigating the expression of genes and proteins in Glioblastoma during hypoxia
spellingShingle Investigating the expression of genes and proteins in Glioblastoma during hypoxia
Monteiro, Ana Rita Alves Pereira de Ferreira
Glioblastoma (GBM)
Hipóxia
Angiogénese
Glicólise
Invasão
title_short Investigating the expression of genes and proteins in Glioblastoma during hypoxia
title_full Investigating the expression of genes and proteins in Glioblastoma during hypoxia
title_fullStr Investigating the expression of genes and proteins in Glioblastoma during hypoxia
title_full_unstemmed Investigating the expression of genes and proteins in Glioblastoma during hypoxia
title_sort Investigating the expression of genes and proteins in Glioblastoma during hypoxia
author Monteiro, Ana Rita Alves Pereira de Ferreira
author_facet Monteiro, Ana Rita Alves Pereira de Ferreira
author_role author
dc.contributor.none.fl_str_mv Madureira, Patrícia
Maia, Ana Teresa
Sapientia
dc.contributor.author.fl_str_mv Monteiro, Ana Rita Alves Pereira de Ferreira
dc.subject.por.fl_str_mv Glioblastoma (GBM)
Hipóxia
Angiogénese
Glicólise
Invasão
topic Glioblastoma (GBM)
Hipóxia
Angiogénese
Glicólise
Invasão
description Glioblastoma multiforme (GBM), grade IV Astrocytoma, is the most common and deadly form of brain cancer. Despite the low incidence rate (3.2 per 100.000 people), patient’s median survival is only 14 months. Notwithstanding all new diagnostic tools, GBM remains a therapeutic challenge, being extremely difficult to prevent recurrence. Therefore, it is essential to conduct research in order to understand the molecular pathways in the core of GBM aggressiveness and swift evolution. GBM is often characterized by hypoxic regions where oxygen levels are extremely low. As a natural consequence of tumour growth and expansion, some areas of the tumour become distanced from the blood vessels and consequently, from the oxygen supply. In such a critical environment, cells activate pro-survival and malignancy mechanisms such as the metabolic switch, invasion and angiogenesis. Hence we investigated the expression of genes featuring these survival mechanisms and identified a panel of hypoxia-driven-malignancy markers. To conduct this study, two GBM patient´s biopsy-derived cell lines (UP-029 and SEBTA-023) were used and cultured under hypoxic conditions for a selected set of time-points (time-course). To characterize the hypoxic response of these cells, hypoxia profiler microarrays were ran for normoxia, 6 and 48 hours of hypoxia (1% O2). Once identified the induced and repressed genes, these were analyzed and validated through qRT-PCR assays. Finally, western-blot analysis was performed to detect target proteins and correlate with the previously obtained gene expression data. Our study validated ANGPTL4, PIGF, VEGFA, GLUT1, PFKB4, PFKB3, BNIP3, DDIT4, NDRG1 and CAIX genes as relevant in GBM’s hypoxia-mediated response. We also pointed out MXI1, HNF4A genes as likely significant factors in GBM hypoxia. Furthermore, we hypothesize PFKB3 as an adaptive resistance marker in GBM and the repression of TFRC as required mechanism for GBM progression.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-25
2019-01-25T00:00:00Z
2020-03-09T14:24:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/13565
urn:tid:202231070
url http://hdl.handle.net/10400.1/13565
identifier_str_mv urn:tid:202231070
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598687491653632