Genetic Programming to Optimise 3D Trajectories

Bibliographic Details
Main Author: Kotze, André
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/150956
Summary: Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
id RCAP_f9a4adf1d329ee1d501522cf89c7f659
oai_identifier_str oai:run.unl.pt:10362/150956
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Genetic Programming to Optimise 3D Trajectoriesgenetic programmingevolutionary algorithmstrajectory optimisationroute planningDomínio/Área Científica::Ciências Sociais::Geografia Económica e SocialDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesTrajectory optimisation is a method of finding the optimal route connecting a start and end point. The suitability of a trajectory depends on non-intersection with any obstacles as well as predefined performance metrics. In the context of UAVs, the goal is to minimise the cost of the route, in terms of energy or time, while avoiding restricted flight zones. Artificial intelligence techniques including evolutionary computation have been applied to trajectory optimisation with various degrees of success. This thesis explores the use of genetic programming (GP) to optimise trajectories in 3D space, by encoding 3D geographic trajectories as syntax trees representing a curve. A comprehensive review of the relevant literature is presented, covering the theory and techniques of GP, as well as the principles and challenges of 3D trajectory optimisation. The main contribution of this work is the development and implementation of a novel GP algorithm using function trees to encode 3D geographical trajectories. The trajectories are validated and evaluated using a realworld dataset and multiple objectives. The results demonstrate the effectiveness of the proposed algorithm, which outperforms existing methods in terms of speed, automaticity, and robustness. Finally, insights and recommendations for future research in this area are provided, highlighting the potential for GP to be applied to other complex optimisation problems in engineering and science.The code and data used in this thesis is available at https://github.com/andre-kotze/gp-trajecGranell Canut, CarlosSantos, Vitor Manuel Pereira Duarte dosHildemann, MoritzRUNKotze, André2023-03-21T12:03:34Z2023-03-012023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/150956TID:203253469enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-09-16T01:38:08Zoai:run.unl.pt:10362/150956Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:40:51.641220Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Genetic Programming to Optimise 3D Trajectories
title Genetic Programming to Optimise 3D Trajectories
spellingShingle Genetic Programming to Optimise 3D Trajectories
Kotze, André
genetic programming
evolutionary algorithms
trajectory optimisation
route planning
Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
title_short Genetic Programming to Optimise 3D Trajectories
title_full Genetic Programming to Optimise 3D Trajectories
title_fullStr Genetic Programming to Optimise 3D Trajectories
title_full_unstemmed Genetic Programming to Optimise 3D Trajectories
title_sort Genetic Programming to Optimise 3D Trajectories
author Kotze, André
author_facet Kotze, André
author_role author
dc.contributor.none.fl_str_mv Granell Canut, Carlos
Santos, Vitor Manuel Pereira Duarte dos
Hildemann, Moritz
RUN
dc.contributor.author.fl_str_mv Kotze, André
dc.subject.por.fl_str_mv genetic programming
evolutionary algorithms
trajectory optimisation
route planning
Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
topic genetic programming
evolutionary algorithms
trajectory optimisation
route planning
Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
description Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
publishDate 2023
dc.date.none.fl_str_mv 2023-03-21T12:03:34Z
2023-03-01
2023-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/150956
TID:203253469
url http://hdl.handle.net/10362/150956
identifier_str_mv TID:203253469
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596884323663873