Transmissibility Prediction: A Deep Learning Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10362/117792 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_f84b3f73f3db4b9ef8f90d4fee3ee4b2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/117792 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Transmissibility Prediction: A Deep Learning ApproachMachine LearningNeural NetworkDeep LearningOilWaterRockFractureTransmissibilityDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsTransmissibility is a very important issue in the study of fractured rocks, as it is directly related to the efficiency of drilling and extracting oil wells, water reservoirs, and even gas exploration. In this piece of work, based on data from transmissibility simulations performed in oil fields in Norway, three different machine learning approaches were applied for predicting the transmissibility of fractured rock areas. First, the fracture diagram image was applied in two different Neural Networks architectures: GoogleNet and ResNet. Second, from the fracture diagram image, it was performed a decomposition of all fracture lines (scratches) on each image into X-axis and Y-axis and it was sent to the same two Neural Network architectures on the previous approach (GoogleNet and ResNet). And finally, it was performed a discretizing continuous variable, and applied on neural network ResNet, thus performing a multi-class classification for predictions instead of regression. Overall, this study provides contributions for transmissibility prediction on oil well fields. Creating options to the traditional technique of calculating transmissibility by computer simulation which is very costly and time-consuming.Castelli, MauroVanneschi, LeonardoRUNBayer, Biazi2021-05-17T16:58:52Z2021-05-122021-05-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/117792TID:202737543enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:53:16Zoai:run.unl.pt:10362/117792Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:24:15.732074Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Transmissibility Prediction: A Deep Learning Approach |
title |
Transmissibility Prediction: A Deep Learning Approach |
spellingShingle |
Transmissibility Prediction: A Deep Learning Approach Bayer, Biazi Machine Learning Neural Network Deep Learning Oil Water Rock Fracture Transmissibility |
title_short |
Transmissibility Prediction: A Deep Learning Approach |
title_full |
Transmissibility Prediction: A Deep Learning Approach |
title_fullStr |
Transmissibility Prediction: A Deep Learning Approach |
title_full_unstemmed |
Transmissibility Prediction: A Deep Learning Approach |
title_sort |
Transmissibility Prediction: A Deep Learning Approach |
author |
Bayer, Biazi |
author_facet |
Bayer, Biazi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro Vanneschi, Leonardo RUN |
dc.contributor.author.fl_str_mv |
Bayer, Biazi |
dc.subject.por.fl_str_mv |
Machine Learning Neural Network Deep Learning Oil Water Rock Fracture Transmissibility |
topic |
Machine Learning Neural Network Deep Learning Oil Water Rock Fracture Transmissibility |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-17T16:58:52Z 2021-05-12 2021-05-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/117792 TID:202737543 |
url |
http://hdl.handle.net/10362/117792 |
identifier_str_mv |
TID:202737543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596672174718976 |