Implementation of a 2D/3D multimedia content adaptation decision engine

Bibliographic Details
Main Author: Fernandes, Rui
Publication Date: 2015
Other Authors: Andrade, M.T.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/12584
Summary: Multimedia content consumption has become very popular due to several factors, among which the amount of content available online and the ubiquity of network connectivity. In fact nowadays everyone can be a content producer and be almost permanently connected to the Internet, thus having the possibility to consume content anywhere, anytime. However, content may present itself in a multitude of formats and networks and terminals may offer very dissimilar transport and consumption capabilities, both along time and space. Accordingly, it often happens that the delivery and/or consumption environments do not offer sufficient or adequate resources to allow the remote access to and consumption of original high quality content. Content adaptation techniques establish means to surpass those impossibilities, allowing content delivery to the user regardless of existing constraints. Since there are several ways to adapt multimedia content, to which different users may react differently, the adaptation engine in charge of deciding the type of adaptation to perform, should ideally be driven with the aim of providing the best Quality of Experience (QoE) to the user [1]. To achieve the best possible outcome, the engine should take into consideration the characteristics of every entity and person involved in the content consumption process, which includes, (1) the multimedia content itself, (2) the transport/access network characteristics, (3) the terminal device characteristics and the (4) user preferences. To take into consideration the multimedia content it is necessary to characterise it and eventually to classify it into a set of limited but meaningful classes. Different metrics were implemented to tackle the content characteristics identification/classification. These were mainly focused on the spatial and temporal complexity classification of the content. The networks characteristics establish the restrictions the adaptation decision algorithm has to obey. This is also true for the device capabilities/characteristics. The user preferences are the subjective element that may establish, for one consumption scenario, different QoE, with the use of the same adaptations, for different users. To investigate this parameter, a subjective quality evaluation was performed. Different contents were generated and classified using the metrics devised to perform that task [2] and, based on this classification, four contents with different characteristics were chosen to be presented to the users. Several bitrates were used to simulate different network conditions, three different types of terminals were used (display, tablet and smartphone) and three adaptations were executed over the original contents, namely, spatial, temporal and quality alterations of the content. The users were asked to classify each presented version on a qualitative scale [3]. The obtained results indicate, as expected, the existence of different users profiles and that the (4) users preferences are dependent of the other three factors: (1), (2) and (3). Results from this subjective experiment are now under analysis to generate these user profiles using an approach that complements Multiple Correspondence Analysis and Cluster Identification. All these characteristics are to be used by a learning algorithm to define the cost of executing a certain adaptation, whenever a certain content is being consumed under specific conditions by a certain user. These costs are then fed to the adaptation decision engine, already implemented through a Markov Decision Process (MDP) to define the final adaptation decision. References: [1] “Definition of quality of experience,” TD109rev2 (PLEN/12), International Telecommunications Union, ITU-T Study Group 12, 2007. [2] J. Korhonen, U. Reiter, and A Ukhanova, “Frame rate versus spatial quality: Which video characteristics do matter?,” in Visual Communications and Image Processing (VCIP), 2013, Nov 2013, pp. 1–6. [3] ITU-R Recommendation BT.500-13, “Methodology for the subjective assessment of the quality of television pictures,” Tech. Rep. BT.500-13, International Telecommunications Union, January 2012.
id RCAP_f7e5e01e7ea6067b4a49117df9433943
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/12584
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Implementation of a 2D/3D multimedia content adaptation decision engineMultimedia content adaptation decisionMultimedia content consumption has become very popular due to several factors, among which the amount of content available online and the ubiquity of network connectivity. In fact nowadays everyone can be a content producer and be almost permanently connected to the Internet, thus having the possibility to consume content anywhere, anytime. However, content may present itself in a multitude of formats and networks and terminals may offer very dissimilar transport and consumption capabilities, both along time and space. Accordingly, it often happens that the delivery and/or consumption environments do not offer sufficient or adequate resources to allow the remote access to and consumption of original high quality content. Content adaptation techniques establish means to surpass those impossibilities, allowing content delivery to the user regardless of existing constraints. Since there are several ways to adapt multimedia content, to which different users may react differently, the adaptation engine in charge of deciding the type of adaptation to perform, should ideally be driven with the aim of providing the best Quality of Experience (QoE) to the user [1]. To achieve the best possible outcome, the engine should take into consideration the characteristics of every entity and person involved in the content consumption process, which includes, (1) the multimedia content itself, (2) the transport/access network characteristics, (3) the terminal device characteristics and the (4) user preferences. To take into consideration the multimedia content it is necessary to characterise it and eventually to classify it into a set of limited but meaningful classes. Different metrics were implemented to tackle the content characteristics identification/classification. These were mainly focused on the spatial and temporal complexity classification of the content. The networks characteristics establish the restrictions the adaptation decision algorithm has to obey. This is also true for the device capabilities/characteristics. The user preferences are the subjective element that may establish, for one consumption scenario, different QoE, with the use of the same adaptations, for different users. To investigate this parameter, a subjective quality evaluation was performed. Different contents were generated and classified using the metrics devised to perform that task [2] and, based on this classification, four contents with different characteristics were chosen to be presented to the users. Several bitrates were used to simulate different network conditions, three different types of terminals were used (display, tablet and smartphone) and three adaptations were executed over the original contents, namely, spatial, temporal and quality alterations of the content. The users were asked to classify each presented version on a qualitative scale [3]. The obtained results indicate, as expected, the existence of different users profiles and that the (4) users preferences are dependent of the other three factors: (1), (2) and (3). Results from this subjective experiment are now under analysis to generate these user profiles using an approach that complements Multiple Correspondence Analysis and Cluster Identification. All these characteristics are to be used by a learning algorithm to define the cost of executing a certain adaptation, whenever a certain content is being consumed under specific conditions by a certain user. These costs are then fed to the adaptation decision engine, already implemented through a Markov Decision Process (MDP) to define the final adaptation decision. References: [1] “Definition of quality of experience,” TD109rev2 (PLEN/12), International Telecommunications Union, ITU-T Study Group 12, 2007. [2] J. Korhonen, U. Reiter, and A Ukhanova, “Frame rate versus spatial quality: Which video characteristics do matter?,” in Visual Communications and Image Processing (VCIP), 2013, Nov 2013, pp. 1–6. [3] ITU-R Recommendation BT.500-13, “Methodology for the subjective assessment of the quality of television pictures,” Tech. Rep. BT.500-13, International Telecommunications Union, January 2012.Biblioteca Digital do IPBFernandes, RuiAndrade, M.T.2016-01-13T10:12:55Z20152015-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/12584engFernandes, Rui ; Andrade, M.T. (2015). Implementation of a 2D/3D multimedia content adaptation decision engine. In MAP-Tele Workshop 2014/15. Guimarãesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:03:14Zoai:bibliotecadigital.ipb.pt:10198/12584Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:28:49.340620Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Implementation of a 2D/3D multimedia content adaptation decision engine
title Implementation of a 2D/3D multimedia content adaptation decision engine
spellingShingle Implementation of a 2D/3D multimedia content adaptation decision engine
Fernandes, Rui
Multimedia content adaptation decision
title_short Implementation of a 2D/3D multimedia content adaptation decision engine
title_full Implementation of a 2D/3D multimedia content adaptation decision engine
title_fullStr Implementation of a 2D/3D multimedia content adaptation decision engine
title_full_unstemmed Implementation of a 2D/3D multimedia content adaptation decision engine
title_sort Implementation of a 2D/3D multimedia content adaptation decision engine
author Fernandes, Rui
author_facet Fernandes, Rui
Andrade, M.T.
author_role author
author2 Andrade, M.T.
author2_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Fernandes, Rui
Andrade, M.T.
dc.subject.por.fl_str_mv Multimedia content adaptation decision
topic Multimedia content adaptation decision
description Multimedia content consumption has become very popular due to several factors, among which the amount of content available online and the ubiquity of network connectivity. In fact nowadays everyone can be a content producer and be almost permanently connected to the Internet, thus having the possibility to consume content anywhere, anytime. However, content may present itself in a multitude of formats and networks and terminals may offer very dissimilar transport and consumption capabilities, both along time and space. Accordingly, it often happens that the delivery and/or consumption environments do not offer sufficient or adequate resources to allow the remote access to and consumption of original high quality content. Content adaptation techniques establish means to surpass those impossibilities, allowing content delivery to the user regardless of existing constraints. Since there are several ways to adapt multimedia content, to which different users may react differently, the adaptation engine in charge of deciding the type of adaptation to perform, should ideally be driven with the aim of providing the best Quality of Experience (QoE) to the user [1]. To achieve the best possible outcome, the engine should take into consideration the characteristics of every entity and person involved in the content consumption process, which includes, (1) the multimedia content itself, (2) the transport/access network characteristics, (3) the terminal device characteristics and the (4) user preferences. To take into consideration the multimedia content it is necessary to characterise it and eventually to classify it into a set of limited but meaningful classes. Different metrics were implemented to tackle the content characteristics identification/classification. These were mainly focused on the spatial and temporal complexity classification of the content. The networks characteristics establish the restrictions the adaptation decision algorithm has to obey. This is also true for the device capabilities/characteristics. The user preferences are the subjective element that may establish, for one consumption scenario, different QoE, with the use of the same adaptations, for different users. To investigate this parameter, a subjective quality evaluation was performed. Different contents were generated and classified using the metrics devised to perform that task [2] and, based on this classification, four contents with different characteristics were chosen to be presented to the users. Several bitrates were used to simulate different network conditions, three different types of terminals were used (display, tablet and smartphone) and three adaptations were executed over the original contents, namely, spatial, temporal and quality alterations of the content. The users were asked to classify each presented version on a qualitative scale [3]. The obtained results indicate, as expected, the existence of different users profiles and that the (4) users preferences are dependent of the other three factors: (1), (2) and (3). Results from this subjective experiment are now under analysis to generate these user profiles using an approach that complements Multiple Correspondence Analysis and Cluster Identification. All these characteristics are to be used by a learning algorithm to define the cost of executing a certain adaptation, whenever a certain content is being consumed under specific conditions by a certain user. These costs are then fed to the adaptation decision engine, already implemented through a Markov Decision Process (MDP) to define the final adaptation decision. References: [1] “Definition of quality of experience,” TD109rev2 (PLEN/12), International Telecommunications Union, ITU-T Study Group 12, 2007. [2] J. Korhonen, U. Reiter, and A Ukhanova, “Frame rate versus spatial quality: Which video characteristics do matter?,” in Visual Communications and Image Processing (VCIP), 2013, Nov 2013, pp. 1–6. [3] ITU-R Recommendation BT.500-13, “Methodology for the subjective assessment of the quality of television pictures,” Tech. Rep. BT.500-13, International Telecommunications Union, January 2012.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
2016-01-13T10:12:55Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/12584
url http://hdl.handle.net/10198/12584
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fernandes, Rui ; Andrade, M.T. (2015). Implementation of a 2D/3D multimedia content adaptation decision engine. In MAP-Tele Workshop 2014/15. Guimarães
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591946160898048