Classification of sheep behaviour though sensor-based collars and machine learning
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/38704 |
Resumo: | Animal behaviour monitoring is a topic of increasing importance in the past few years, due to the needs to optimize the multiple fields of animal production to answer worldwide population growth. Considering that animal behaviour is an indicator of animal welfare, by automating and scaling this process, it is possible to constantly monitor entire flocks, allowing for the early detection of diseases which might otherwise incur into huge costs and losses. Simultaneously, the cost of microprocessors and small sensors is decreasing. This allows for the construction of low-powered devices capable of both retrieving and classifying animal behaviour, resorting to Machine Learning. Here, the study revolves around a collar equipped with 3 sensors: accelerometer, gyroscope, and thermometer, resulting in an initial set of 12 features. From the wide variety of algorithms, Decision Trees are particularly suitable for this task due to their many advantages, namely simplicity and readability. The latter allows for a conversion of the developed models into raw code, passive of being directly applied on the devices. Therefore, the goal of this dissertation is to evaluate the ability of Decision Trees to classify six main behaviours (Lying, Standing, Inclined, Eating, Walking and Ruminating), while simultaneously assessing which sensors and features are more valuable to optimize the production costs of said devices. Overall, it is possible to classify these behaviours reliably (with a balanced accuracy around 90%) and remove one of the sensors, without impacting model’s performance significantly. Notwithstanding, Temperature surprisingly arises as a potential important feature to predict postures. This thesis was realized with the support of the Instituto de Telecomunicações. |
| id |
RCAP_f3d1c10997a8f0ee68e80e393b8abd52 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/38704 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Classification of sheep behaviour though sensor-based collars and machine learningAccelerometerAnimal behaviourCollarDecision treeGyroscopeMachine learningRuminationSheepAnimal behaviour monitoring is a topic of increasing importance in the past few years, due to the needs to optimize the multiple fields of animal production to answer worldwide population growth. Considering that animal behaviour is an indicator of animal welfare, by automating and scaling this process, it is possible to constantly monitor entire flocks, allowing for the early detection of diseases which might otherwise incur into huge costs and losses. Simultaneously, the cost of microprocessors and small sensors is decreasing. This allows for the construction of low-powered devices capable of both retrieving and classifying animal behaviour, resorting to Machine Learning. Here, the study revolves around a collar equipped with 3 sensors: accelerometer, gyroscope, and thermometer, resulting in an initial set of 12 features. From the wide variety of algorithms, Decision Trees are particularly suitable for this task due to their many advantages, namely simplicity and readability. The latter allows for a conversion of the developed models into raw code, passive of being directly applied on the devices. Therefore, the goal of this dissertation is to evaluate the ability of Decision Trees to classify six main behaviours (Lying, Standing, Inclined, Eating, Walking and Ruminating), while simultaneously assessing which sensors and features are more valuable to optimize the production costs of said devices. Overall, it is possible to classify these behaviours reliably (with a balanced accuracy around 90%) and remove one of the sensors, without impacting model’s performance significantly. Notwithstanding, Temperature surprisingly arises as a potential important feature to predict postures. This thesis was realized with the support of the Instituto de Telecomunicações.Monitorização de comportamento animal é um tópico que tem ganho bastante importância nos últimos anos, devido à necessidade de otimizar as várias áreas de produção animal, no sentido de responder ao aumento da população mundial. Tendo em conta que o comportamento animal é um indicador do estado de saúde dos mesmos, ao automatizar e escalar este processo, é possível monitorizar rebanhos inteiros, permitindo a deteção precoce de doenças, que caso não tratadas, podem acarretar grandes custos e perdas. Simultaneamente, o custo de microprocessadores e pequenos sensores tem vindo a diminuir. Isto permite a construção de pequenos dispositivos capazes de recolher e classificar comportamento animal, recorrendo a Machine Learning. Este estudo centra-se numa coleira equipada com 3 sensores: acelerómetro, giroscópio e termómetro, resultando num conjunto inicial de 12 features. Do variado leque de algoritmos, Árvores de Decisão (DT) são particularmente pertinentes para esta tarefa, graças às inúmeras vantagens, nomeadamente simplicidade e legibilidade. Esta permite que os modelos desenvolvidos sejam convertidos em código puro, passivo de ser usado diretamente pelos dispositivos. Assim, o objetivo desta dissertação é avaliar a habilidade de Árvores de Decisão para classificar 6 comportamentos principais (Deitado, De pé, Inclinado, Comendo, Caminhando e Ruminando), e simultaneamente verificar que sensores e features são mais importantes, no sentido de otimizar os custos de produção destes dispositivos. De maneira geral, é possível classificar estes comportamentos com confiança (obtendo uma balanced accuracy de 90%) e remover um dos sensores sem afetar significativamente a performance dos modelos. Além disso, a Temperatura realça-se de forma surpreendente como uma feature com bastante potencial para prever posturas. Esta dissertação foi realizada com o apoio do Instituto de Telecomunicações.2023-07-17T11:02:28Z2022-11-29T00:00:00Z2022-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38704engFonseca, Luís Carlos Duarteinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:47:25Zoai:ria.ua.pt:10773/38704Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:20:24.946768Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Classification of sheep behaviour though sensor-based collars and machine learning |
| title |
Classification of sheep behaviour though sensor-based collars and machine learning |
| spellingShingle |
Classification of sheep behaviour though sensor-based collars and machine learning Fonseca, Luís Carlos Duarte Accelerometer Animal behaviour Collar Decision tree Gyroscope Machine learning Rumination Sheep |
| title_short |
Classification of sheep behaviour though sensor-based collars and machine learning |
| title_full |
Classification of sheep behaviour though sensor-based collars and machine learning |
| title_fullStr |
Classification of sheep behaviour though sensor-based collars and machine learning |
| title_full_unstemmed |
Classification of sheep behaviour though sensor-based collars and machine learning |
| title_sort |
Classification of sheep behaviour though sensor-based collars and machine learning |
| author |
Fonseca, Luís Carlos Duarte |
| author_facet |
Fonseca, Luís Carlos Duarte |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Fonseca, Luís Carlos Duarte |
| dc.subject.por.fl_str_mv |
Accelerometer Animal behaviour Collar Decision tree Gyroscope Machine learning Rumination Sheep |
| topic |
Accelerometer Animal behaviour Collar Decision tree Gyroscope Machine learning Rumination Sheep |
| description |
Animal behaviour monitoring is a topic of increasing importance in the past few years, due to the needs to optimize the multiple fields of animal production to answer worldwide population growth. Considering that animal behaviour is an indicator of animal welfare, by automating and scaling this process, it is possible to constantly monitor entire flocks, allowing for the early detection of diseases which might otherwise incur into huge costs and losses. Simultaneously, the cost of microprocessors and small sensors is decreasing. This allows for the construction of low-powered devices capable of both retrieving and classifying animal behaviour, resorting to Machine Learning. Here, the study revolves around a collar equipped with 3 sensors: accelerometer, gyroscope, and thermometer, resulting in an initial set of 12 features. From the wide variety of algorithms, Decision Trees are particularly suitable for this task due to their many advantages, namely simplicity and readability. The latter allows for a conversion of the developed models into raw code, passive of being directly applied on the devices. Therefore, the goal of this dissertation is to evaluate the ability of Decision Trees to classify six main behaviours (Lying, Standing, Inclined, Eating, Walking and Ruminating), while simultaneously assessing which sensors and features are more valuable to optimize the production costs of said devices. Overall, it is possible to classify these behaviours reliably (with a balanced accuracy around 90%) and remove one of the sensors, without impacting model’s performance significantly. Notwithstanding, Temperature surprisingly arises as a potential important feature to predict postures. This thesis was realized with the support of the Instituto de Telecomunicações. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-11-29T00:00:00Z 2022-11-29 2023-07-17T11:02:28Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38704 |
| url |
http://hdl.handle.net/10773/38704 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594512366108672 |