Role of microRNAs on T cell differentiation during immune responses in vivo
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | , , , , , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.21/14378 |
Summary: | CD4+ T cells are key players in host defense against pathogens, but an incorrect balance between CD4+ T cell subsets, namely pro-inflammatory effector cells, including T helper 1 (Th)1 and Th17 cells (IFN-γ- and IL-17-producers, respectively), and anti-inflammatory regulatory cells (Treg; Foxp3+ subset), can lead to immune-mediated diseases. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. While individual miRNAs were shown to regulate the differentiation of specific CD4+ T cell populations, a holistic approach based on in vivo responses is missing and is critical to understanding how miRNA networks control this balance under physiological conditions. To address this, we have established a triple reporter mouse for Ifng, Il17, and Foxp3, and subject it to experimental autoimmune encephalomyelitis (EAE). We perform miRNA-seq analysis on Th1, Th17, and Treg cells isolated from the spleen (SPL) and lymph nodes (LNs) at the peak-plateau stage and found that 110 miRNAs are differentially expressed between effector and regulatory subsets. We further selected 8 candidate miRNAs that were specifically upregulated in one population versus the others. Both overexpression and inhibition studies showed that miR-126a limits IL-17+ expression in Th17 cells in vitro. Treatment with antagomiRs in vivo showed that silencing miR-122 increased the number of IL-17+ cells in the LNs and precipitated the onset of EAE, whereas inhibition of miR-1247 decreased the severity of the disease by reducing the number of IFN-γ+ cells, also in the LNs. Additionally, we identified IL-6 and TGF-β as the key cytokines upstream of miR-126a and miR-1247 expression, respectively. While both IL-6 and TGF-β also induce miR-122 expression, we found that IL-23 and IL-1β repress its expression. Interestingly, and given that IL-23 and IL-1β are critical to inducing Th17-mediated pathogenicity, we have consistently observed a pathogenic gene signature in CNS-derived Th17 cells when compared to peripheral Th17 cells with concomitantly decreased levels of miR-126a and miR-122. Overall, our results suggest that miR-126a and miR-122 regulate IL-17 expression and the pathogenic phenotype of Th17 cells to prevent excessive inflammation in the periphery while miR-1247 maintains the inflammatory phenotype of Th1 cells in an anti-inflammatory environment. |
| id |
RCAP_f2dd2be38a9ed3f9cb7fd7eb1fc0a701 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/14378 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Role of microRNAs on T cell differentiation during immune responses in vivoMicroRNAT-cell differentiationCD4+ T cells are key players in host defense against pathogens, but an incorrect balance between CD4+ T cell subsets, namely pro-inflammatory effector cells, including T helper 1 (Th)1 and Th17 cells (IFN-γ- and IL-17-producers, respectively), and anti-inflammatory regulatory cells (Treg; Foxp3+ subset), can lead to immune-mediated diseases. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. While individual miRNAs were shown to regulate the differentiation of specific CD4+ T cell populations, a holistic approach based on in vivo responses is missing and is critical to understanding how miRNA networks control this balance under physiological conditions. To address this, we have established a triple reporter mouse for Ifng, Il17, and Foxp3, and subject it to experimental autoimmune encephalomyelitis (EAE). We perform miRNA-seq analysis on Th1, Th17, and Treg cells isolated from the spleen (SPL) and lymph nodes (LNs) at the peak-plateau stage and found that 110 miRNAs are differentially expressed between effector and regulatory subsets. We further selected 8 candidate miRNAs that were specifically upregulated in one population versus the others. Both overexpression and inhibition studies showed that miR-126a limits IL-17+ expression in Th17 cells in vitro. Treatment with antagomiRs in vivo showed that silencing miR-122 increased the number of IL-17+ cells in the LNs and precipitated the onset of EAE, whereas inhibition of miR-1247 decreased the severity of the disease by reducing the number of IFN-γ+ cells, also in the LNs. Additionally, we identified IL-6 and TGF-β as the key cytokines upstream of miR-126a and miR-1247 expression, respectively. While both IL-6 and TGF-β also induce miR-122 expression, we found that IL-23 and IL-1β repress its expression. Interestingly, and given that IL-23 and IL-1β are critical to inducing Th17-mediated pathogenicity, we have consistently observed a pathogenic gene signature in CNS-derived Th17 cells when compared to peripheral Th17 cells with concomitantly decreased levels of miR-126a and miR-122. Overall, our results suggest that miR-126a and miR-122 regulate IL-17 expression and the pathogenic phenotype of Th17 cells to prevent excessive inflammation in the periphery while miR-1247 maintains the inflammatory phenotype of Th1 cells in an anti-inflammatory environment.RCIPLCunha, CarolinaRomero, Paula VargasPelicano, CatarinaPais, Ana TeresaInácio, DanielPappoto, PedroAmado, TiagoSilva-Santos, BrunoGomes, Anita Q.2022-03-04T12:03:01Z2021-092021-09-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.21/14378enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T08:04:41Zoai:repositorio.ipl.pt:10400.21/14378Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:53:16.291904Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| title |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| spellingShingle |
Role of microRNAs on T cell differentiation during immune responses in vivo Cunha, Carolina MicroRNA T-cell differentiation |
| title_short |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| title_full |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| title_fullStr |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| title_full_unstemmed |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| title_sort |
Role of microRNAs on T cell differentiation during immune responses in vivo |
| author |
Cunha, Carolina |
| author_facet |
Cunha, Carolina Romero, Paula Vargas Pelicano, Catarina Pais, Ana Teresa Inácio, Daniel Pappoto, Pedro Amado, Tiago Silva-Santos, Bruno Gomes, Anita Q. |
| author_role |
author |
| author2 |
Romero, Paula Vargas Pelicano, Catarina Pais, Ana Teresa Inácio, Daniel Pappoto, Pedro Amado, Tiago Silva-Santos, Bruno Gomes, Anita Q. |
| author2_role |
author author author author author author author author |
| dc.contributor.none.fl_str_mv |
RCIPL |
| dc.contributor.author.fl_str_mv |
Cunha, Carolina Romero, Paula Vargas Pelicano, Catarina Pais, Ana Teresa Inácio, Daniel Pappoto, Pedro Amado, Tiago Silva-Santos, Bruno Gomes, Anita Q. |
| dc.subject.por.fl_str_mv |
MicroRNA T-cell differentiation |
| topic |
MicroRNA T-cell differentiation |
| description |
CD4+ T cells are key players in host defense against pathogens, but an incorrect balance between CD4+ T cell subsets, namely pro-inflammatory effector cells, including T helper 1 (Th)1 and Th17 cells (IFN-γ- and IL-17-producers, respectively), and anti-inflammatory regulatory cells (Treg; Foxp3+ subset), can lead to immune-mediated diseases. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. While individual miRNAs were shown to regulate the differentiation of specific CD4+ T cell populations, a holistic approach based on in vivo responses is missing and is critical to understanding how miRNA networks control this balance under physiological conditions. To address this, we have established a triple reporter mouse for Ifng, Il17, and Foxp3, and subject it to experimental autoimmune encephalomyelitis (EAE). We perform miRNA-seq analysis on Th1, Th17, and Treg cells isolated from the spleen (SPL) and lymph nodes (LNs) at the peak-plateau stage and found that 110 miRNAs are differentially expressed between effector and regulatory subsets. We further selected 8 candidate miRNAs that were specifically upregulated in one population versus the others. Both overexpression and inhibition studies showed that miR-126a limits IL-17+ expression in Th17 cells in vitro. Treatment with antagomiRs in vivo showed that silencing miR-122 increased the number of IL-17+ cells in the LNs and precipitated the onset of EAE, whereas inhibition of miR-1247 decreased the severity of the disease by reducing the number of IFN-γ+ cells, also in the LNs. Additionally, we identified IL-6 and TGF-β as the key cytokines upstream of miR-126a and miR-1247 expression, respectively. While both IL-6 and TGF-β also induce miR-122 expression, we found that IL-23 and IL-1β repress its expression. Interestingly, and given that IL-23 and IL-1β are critical to inducing Th17-mediated pathogenicity, we have consistently observed a pathogenic gene signature in CNS-derived Th17 cells when compared to peripheral Th17 cells with concomitantly decreased levels of miR-126a and miR-122. Overall, our results suggest that miR-126a and miR-122 regulate IL-17 expression and the pathogenic phenotype of Th17 cells to prevent excessive inflammation in the periphery while miR-1247 maintains the inflammatory phenotype of Th1 cells in an anti-inflammatory environment. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09 2021-09-01T00:00:00Z 2022-03-04T12:03:01Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/14378 |
| url |
http://hdl.handle.net/10400.21/14378 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598378802413568 |