Realtime image noise reduction FPGA implementation with edge detection
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.13/3031 |
Resumo: | The purpose of this dissertation was to develop and implement, in a Field Programmable Gate Array (FPGA), a noise reduction algorithm for real-time sensor acquired images. A Moving Average filter was chosen due to its fulfillment of a low demanding computational expenditure nature, speed, good precision and low to medium hardware resources utilization. The technique is simple to implement, however, if all pixels are indiscriminately filtered, the result will be a blurry image which is undesirable. Since human eye is more sensitive to contrasts, a technique was introduced to preserve sharp contour transitions which, in the author’s opinion, is the dissertation contribution. Synthetic and real images were tested. Synthetic, composed both with sharp and soft tone transitions, were generated with a developed algorithm, while real images were captured with an 8-kbit (8192 shades) high resolution sensor scaled up to 10 × 103 shades. A least-squares polynomial data smoothing filter, Savitzky-Golay, was used as comparison. It can be adjusted using 3 degrees of freedom ─ the window frame length which varies the filtering relation size between pixels’ neighborhood, the derivative order, which varies the curviness and the polynomial coefficients which change the adaptability of the curve. Moving Average filter only permits one degree of freedom, the window frame length. Tests revealed promising results with 2 and 4ℎ polynomial orders. Higher qualitative results were achieved with Savitzky-Golay’s better signal characteristics preservation, especially at high frequencies. FPGA algorithms were implemented in 64-bit integer registers serving two purposes: increase precision, hence, reducing the error comparatively as if it were done in floating-point registers; accommodate the registers’ growing cumulative multiplications. Results were then compared with MATLAB’s double precision 64-bit floating-point computations to verify the error difference between both. Used comparison parameters were Mean Squared Error, Signalto-Noise Ratio and Similarity coefficient. |
| id |
RCAP_ef4cd62688fc0b6ffc99a0f502f80463 |
|---|---|
| oai_identifier_str |
oai:digituma.uma.pt:10400.13/3031 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Realtime image noise reduction FPGA implementation with edge detectionRuídoFPGADeteção de contornoMédia deslizanteSavitzky-GolayDenoisingContour detectionMoving averageElectrical Engineering - Telecommunications.Faculdade de Ciências Exatas e da EngenhariaThe purpose of this dissertation was to develop and implement, in a Field Programmable Gate Array (FPGA), a noise reduction algorithm for real-time sensor acquired images. A Moving Average filter was chosen due to its fulfillment of a low demanding computational expenditure nature, speed, good precision and low to medium hardware resources utilization. The technique is simple to implement, however, if all pixels are indiscriminately filtered, the result will be a blurry image which is undesirable. Since human eye is more sensitive to contrasts, a technique was introduced to preserve sharp contour transitions which, in the author’s opinion, is the dissertation contribution. Synthetic and real images were tested. Synthetic, composed both with sharp and soft tone transitions, were generated with a developed algorithm, while real images were captured with an 8-kbit (8192 shades) high resolution sensor scaled up to 10 × 103 shades. A least-squares polynomial data smoothing filter, Savitzky-Golay, was used as comparison. It can be adjusted using 3 degrees of freedom ─ the window frame length which varies the filtering relation size between pixels’ neighborhood, the derivative order, which varies the curviness and the polynomial coefficients which change the adaptability of the curve. Moving Average filter only permits one degree of freedom, the window frame length. Tests revealed promising results with 2 and 4ℎ polynomial orders. Higher qualitative results were achieved with Savitzky-Golay’s better signal characteristics preservation, especially at high frequencies. FPGA algorithms were implemented in 64-bit integer registers serving two purposes: increase precision, hence, reducing the error comparatively as if it were done in floating-point registers; accommodate the registers’ growing cumulative multiplications. Results were then compared with MATLAB’s double precision 64-bit floating-point computations to verify the error difference between both. Used comparison parameters were Mean Squared Error, Signalto-Noise Ratio and Similarity coefficient.Dias, Fernando Manuel Rosmaninho Morgado FerrãoDigitUMaJardim, Ricardo Jorge Ferreira2020-12-10T10:04:26Z2020-06-082020-06-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/3031urn:tid:202545210enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T17:06:11Zoai:digituma.uma.pt:10400.13/3031Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:47:19.198777Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Realtime image noise reduction FPGA implementation with edge detection |
| title |
Realtime image noise reduction FPGA implementation with edge detection |
| spellingShingle |
Realtime image noise reduction FPGA implementation with edge detection Jardim, Ricardo Jorge Ferreira Ruído FPGA Deteção de contorno Média deslizante Savitzky-Golay Denoising Contour detection Moving average Electrical Engineering - Telecommunications . Faculdade de Ciências Exatas e da Engenharia |
| title_short |
Realtime image noise reduction FPGA implementation with edge detection |
| title_full |
Realtime image noise reduction FPGA implementation with edge detection |
| title_fullStr |
Realtime image noise reduction FPGA implementation with edge detection |
| title_full_unstemmed |
Realtime image noise reduction FPGA implementation with edge detection |
| title_sort |
Realtime image noise reduction FPGA implementation with edge detection |
| author |
Jardim, Ricardo Jorge Ferreira |
| author_facet |
Jardim, Ricardo Jorge Ferreira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dias, Fernando Manuel Rosmaninho Morgado Ferrão DigitUMa |
| dc.contributor.author.fl_str_mv |
Jardim, Ricardo Jorge Ferreira |
| dc.subject.por.fl_str_mv |
Ruído FPGA Deteção de contorno Média deslizante Savitzky-Golay Denoising Contour detection Moving average Electrical Engineering - Telecommunications . Faculdade de Ciências Exatas e da Engenharia |
| topic |
Ruído FPGA Deteção de contorno Média deslizante Savitzky-Golay Denoising Contour detection Moving average Electrical Engineering - Telecommunications . Faculdade de Ciências Exatas e da Engenharia |
| description |
The purpose of this dissertation was to develop and implement, in a Field Programmable Gate Array (FPGA), a noise reduction algorithm for real-time sensor acquired images. A Moving Average filter was chosen due to its fulfillment of a low demanding computational expenditure nature, speed, good precision and low to medium hardware resources utilization. The technique is simple to implement, however, if all pixels are indiscriminately filtered, the result will be a blurry image which is undesirable. Since human eye is more sensitive to contrasts, a technique was introduced to preserve sharp contour transitions which, in the author’s opinion, is the dissertation contribution. Synthetic and real images were tested. Synthetic, composed both with sharp and soft tone transitions, were generated with a developed algorithm, while real images were captured with an 8-kbit (8192 shades) high resolution sensor scaled up to 10 × 103 shades. A least-squares polynomial data smoothing filter, Savitzky-Golay, was used as comparison. It can be adjusted using 3 degrees of freedom ─ the window frame length which varies the filtering relation size between pixels’ neighborhood, the derivative order, which varies the curviness and the polynomial coefficients which change the adaptability of the curve. Moving Average filter only permits one degree of freedom, the window frame length. Tests revealed promising results with 2 and 4ℎ polynomial orders. Higher qualitative results were achieved with Savitzky-Golay’s better signal characteristics preservation, especially at high frequencies. FPGA algorithms were implemented in 64-bit integer registers serving two purposes: increase precision, hence, reducing the error comparatively as if it were done in floating-point registers; accommodate the registers’ growing cumulative multiplications. Results were then compared with MATLAB’s double precision 64-bit floating-point computations to verify the error difference between both. Used comparison parameters were Mean Squared Error, Signalto-Noise Ratio and Similarity coefficient. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-10T10:04:26Z 2020-06-08 2020-06-08T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/3031 urn:tid:202545210 |
| url |
http://hdl.handle.net/10400.13/3031 |
| identifier_str_mv |
urn:tid:202545210 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598869495087104 |