Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10216/129231 |
Summary: | Machine learning (ML) algorithms have shown great performance in geological remote sensing applications. The study area of this work was the Fregeneda-Almendra region (Spain-Portugal) where the support vector machine (SVM) was employed. Lithium (Li)-pegmatite exploration using satellite data presents some challenges since pegmatites are, by nature, small, narrow bodies. Consequently, the following objectives were defined: (i) train several SVM's on Sentinel-2 images with different parameters to find the optimal model; (ii) assess the impact of imbalanced data; (iii) develop a successful methodological approach to delineate target areas for Li-exploration. Parameter optimization and model evaluation was accomplished by a two-staged grid-search with cross-validation. Several new methodological advances were proposed, including a region of interest (ROI)-based splitting strategy to create the training and test subsets, a semi-automatization of the classification process, and the application of a more innovative and adequate metric score to choose the best model. The proposed methodology obtained good results, identifying known Li-pegmatite occurrences as well as other target areas for Li-exploration. Also, the results showed that the class imbalance had a negative impact on the SVM performance since known Li-pegmatite occurrences were not identified. The potentials and limitations of the methodology proposed are highlighted and its applicability to other case studies is discussed. |
id |
RCAP_ee69c46b5fe3e6b046dbc43675af86b6 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/129231 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing PegmatitesMachine learning (ML) algorithms have shown great performance in geological remote sensing applications. The study area of this work was the Fregeneda-Almendra region (Spain-Portugal) where the support vector machine (SVM) was employed. Lithium (Li)-pegmatite exploration using satellite data presents some challenges since pegmatites are, by nature, small, narrow bodies. Consequently, the following objectives were defined: (i) train several SVM's on Sentinel-2 images with different parameters to find the optimal model; (ii) assess the impact of imbalanced data; (iii) develop a successful methodological approach to delineate target areas for Li-exploration. Parameter optimization and model evaluation was accomplished by a two-staged grid-search with cross-validation. Several new methodological advances were proposed, including a region of interest (ROI)-based splitting strategy to create the training and test subsets, a semi-automatization of the classification process, and the application of a more innovative and adequate metric score to choose the best model. The proposed methodology obtained good results, identifying known Li-pegmatite occurrences as well as other target areas for Li-exploration. Also, the results showed that the class imbalance had a negative impact on the SVM performance since known Li-pegmatite occurrences were not identified. The potentials and limitations of the methodology proposed are highlighted and its applicability to other case studies is discussed.20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/129231eng2072-429210.3390/rs12142319Cardoso Fernandes, JAna TeodoroAlexandre LimaRoda Robles, Einfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T16:53:32Zoai:repositorio-aberto.up.pt:10216/129231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:55:57.716008Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
title |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
spellingShingle |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites Cardoso Fernandes, J |
title_short |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
title_full |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
title_fullStr |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
title_full_unstemmed |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
title_sort |
Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites |
author |
Cardoso Fernandes, J |
author_facet |
Cardoso Fernandes, J Ana Teodoro Alexandre Lima Roda Robles, E |
author_role |
author |
author2 |
Ana Teodoro Alexandre Lima Roda Robles, E |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cardoso Fernandes, J Ana Teodoro Alexandre Lima Roda Robles, E |
description |
Machine learning (ML) algorithms have shown great performance in geological remote sensing applications. The study area of this work was the Fregeneda-Almendra region (Spain-Portugal) where the support vector machine (SVM) was employed. Lithium (Li)-pegmatite exploration using satellite data presents some challenges since pegmatites are, by nature, small, narrow bodies. Consequently, the following objectives were defined: (i) train several SVM's on Sentinel-2 images with different parameters to find the optimal model; (ii) assess the impact of imbalanced data; (iii) develop a successful methodological approach to delineate target areas for Li-exploration. Parameter optimization and model evaluation was accomplished by a two-staged grid-search with cross-validation. Several new methodological advances were proposed, including a region of interest (ROI)-based splitting strategy to create the training and test subsets, a semi-automatization of the classification process, and the application of a more innovative and adequate metric score to choose the best model. The proposed methodology obtained good results, identifying known Li-pegmatite occurrences as well as other target areas for Li-exploration. Also, the results showed that the class imbalance had a negative impact on the SVM performance since known Li-pegmatite occurrences were not identified. The potentials and limitations of the methodology proposed are highlighted and its applicability to other case studies is discussed. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/129231 |
url |
https://hdl.handle.net/10216/129231 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2072-4292 10.3390/rs12142319 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599487696699392 |