Generation of business rules code from natural language

Bibliographic Details
Main Author: Gonçalves, Nuno Miguel Sousa
Publication Date: 2025
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.13/7183
Summary: The coding of business rules (BR) is a critical task in information systems (IS) development, particularly within the typical model-view-controller (MVC) architecture. In this architecture, the controller (which includes business logic and BR) handles the flow of data between the view (user interface) and the model (database). Although implementing BR can be complex, time-consuming, and even daunting, current software development tools remain more focused on designing the user interface and the database. This emphasis is understandable, given the challenges of defining complex structures like classes or tables, as well as their relationships, attributes, and fields. However, an alternative approach lies in the domain of natural language processing (NLP). Natural language (NL) may offer a more suitable means of modeling BR, especially as citizen developers become increasingly involved in software development. With this perspective in mind, this thesis reviews the state of the art in generating BR code from NL. The study examined 604 articles through forward, backward, and lateral snowballing techniques, starting with four cornerstone papers and ultimately narrowing the field to 11 relevant articles. These selected articles propose solutions that leverage the semantics of business vocabulary and business rules (SBVR) or decision model and notation (DMN) as a "bridge" to produce code in object constraint language (OCL), entity-relationship (ER) diagrams, or extensible markup language (XML). Our findings suggest that while these solutions are valuable, they fall short of generating BR code in diverse programming languages such as C, Java, or Python. To address this gap, we aim to create a prototype that can effectively translate natural language into machine-readable code. This thesis is part of a larger project called "Hydra Code Generation Tool (HydraCGT)," which belongs to the Department of the University of Madeira – Office for the Development of Information Technology Applications (GDAI).
id RCAP_ed9be7a07f2cc2364c033153030f4844
oai_identifier_str oai:digituma.uma.pt:10400.13/7183
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Generation of business rules code from natural languageArtificial intelligenceNatural language processingSystems engineeringBusiness logicBusiness rulesSBVROCLDMNBPMNInteligência artificialProcessamento de linguagem naturalEngenharia de sistemasLógica de negóciosRegras de negócioInformatics Engineering.Faculdade de Ciências Exatas e da EngenhariaThe coding of business rules (BR) is a critical task in information systems (IS) development, particularly within the typical model-view-controller (MVC) architecture. In this architecture, the controller (which includes business logic and BR) handles the flow of data between the view (user interface) and the model (database). Although implementing BR can be complex, time-consuming, and even daunting, current software development tools remain more focused on designing the user interface and the database. This emphasis is understandable, given the challenges of defining complex structures like classes or tables, as well as their relationships, attributes, and fields. However, an alternative approach lies in the domain of natural language processing (NLP). Natural language (NL) may offer a more suitable means of modeling BR, especially as citizen developers become increasingly involved in software development. With this perspective in mind, this thesis reviews the state of the art in generating BR code from NL. The study examined 604 articles through forward, backward, and lateral snowballing techniques, starting with four cornerstone papers and ultimately narrowing the field to 11 relevant articles. These selected articles propose solutions that leverage the semantics of business vocabulary and business rules (SBVR) or decision model and notation (DMN) as a "bridge" to produce code in object constraint language (OCL), entity-relationship (ER) diagrams, or extensible markup language (XML). Our findings suggest that while these solutions are valuable, they fall short of generating BR code in diverse programming languages such as C, Java, or Python. To address this gap, we aim to create a prototype that can effectively translate natural language into machine-readable code. This thesis is part of a larger project called "Hydra Code Generation Tool (HydraCGT)," which belongs to the Department of the University of Madeira – Office for the Development of Information Technology Applications (GDAI).A codificação de regras de negócio (RN) é uma tarefa crítica no desenvolvimento de sistemas de informação (SI), especialmente dentro da arquitetura típica modelo-visão controlador (MVC). Nesta arquitetura, o controlador (que inclui a lógica de negócios e as RN) gerencia o fluxo de dados entre a visão (interface do usuário) e o modelo (banco de dados). Embora a implementação de RN possa ser complexa, demorada e até intimidadora, as ferramentas de desenvolvimento de software atuais continuam mais focadas no design da interface do usuário e do banco de dados. Essa ênfase é compreensível, dada a dificuldade de definir estruturas complexas como classes ou tabelas, além de seus relacionamentos, atributos e campos. No entanto, uma abordagem alternativa reside no domínio do processamento de linguagem natural (PLN). A linguagem natural (LN) pode oferecer um meio mais adequado para modelar RN, especialmente à medida que desenvolvedores cidadãos se tornam cada vez mais envolvidos no desenvolvimento de software. Com essa perspectiva em mente, esta tese revisa o estado da arte na geração de código de RN a partir de LN. O estudo examinou 604 artigos por meio de técnicas de "snowballing" para frente, para trás e lateral, começando com quatro artigos fundamentais e, por fim, reduzindo o campo para 11 artigos relevantes. Os artigos selecionados propõem soluções que aproveitam a semântica do vocabulário e das regras de negócio (SBVR) ou do modelo de decisão e notação (DMN) como uma "ponte" para produzir código em linguagem de restrição de objetos (OCL), diagramas de entidade relacionamento (ER) ou linguagem de marcação extensível (XML). Nossos resultados sugerem que, embora essas soluções sejam valiosas, elas não conseguem gerar código de RN em linguagens de programação diversas, como C, Java ou Python. Para abordar essa lacuna, buscamos criar um protótipo que possa efetivamente traduzir linguagem natural em código legível por máquina. Esta tese faz parte de um projeto maior chamado "Hydra Code Generation Tool (HydraCGT)", pertencente ao Departamento da Universidade da Madeira – Gabinete para o Desenvolvimento de Aplicações Informáticas (GDAI).Valente, Pedro DionísioFermé, Eduardo LeopoldoDigitUMaGonçalves, Nuno Miguel Sousa2025-02-28T11:38:53Z2025-01-162025-01-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/7183urn:tid:203899466enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-02T08:18:23Zoai:digituma.uma.pt:10400.13/7183Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:06:26.400460Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Generation of business rules code from natural language
title Generation of business rules code from natural language
spellingShingle Generation of business rules code from natural language
Gonçalves, Nuno Miguel Sousa
Artificial intelligence
Natural language processing
Systems engineering
Business logic
Business rules
SBVR
OCL
DMN
BPMN
Inteligência artificial
Processamento de linguagem natural
Engenharia de sistemas
Lógica de negócios
Regras de negócio
Informatics Engineering
.
Faculdade de Ciências Exatas e da Engenharia
title_short Generation of business rules code from natural language
title_full Generation of business rules code from natural language
title_fullStr Generation of business rules code from natural language
title_full_unstemmed Generation of business rules code from natural language
title_sort Generation of business rules code from natural language
author Gonçalves, Nuno Miguel Sousa
author_facet Gonçalves, Nuno Miguel Sousa
author_role author
dc.contributor.none.fl_str_mv Valente, Pedro Dionísio
Fermé, Eduardo Leopoldo
DigitUMa
dc.contributor.author.fl_str_mv Gonçalves, Nuno Miguel Sousa
dc.subject.por.fl_str_mv Artificial intelligence
Natural language processing
Systems engineering
Business logic
Business rules
SBVR
OCL
DMN
BPMN
Inteligência artificial
Processamento de linguagem natural
Engenharia de sistemas
Lógica de negócios
Regras de negócio
Informatics Engineering
.
Faculdade de Ciências Exatas e da Engenharia
topic Artificial intelligence
Natural language processing
Systems engineering
Business logic
Business rules
SBVR
OCL
DMN
BPMN
Inteligência artificial
Processamento de linguagem natural
Engenharia de sistemas
Lógica de negócios
Regras de negócio
Informatics Engineering
.
Faculdade de Ciências Exatas e da Engenharia
description The coding of business rules (BR) is a critical task in information systems (IS) development, particularly within the typical model-view-controller (MVC) architecture. In this architecture, the controller (which includes business logic and BR) handles the flow of data between the view (user interface) and the model (database). Although implementing BR can be complex, time-consuming, and even daunting, current software development tools remain more focused on designing the user interface and the database. This emphasis is understandable, given the challenges of defining complex structures like classes or tables, as well as their relationships, attributes, and fields. However, an alternative approach lies in the domain of natural language processing (NLP). Natural language (NL) may offer a more suitable means of modeling BR, especially as citizen developers become increasingly involved in software development. With this perspective in mind, this thesis reviews the state of the art in generating BR code from NL. The study examined 604 articles through forward, backward, and lateral snowballing techniques, starting with four cornerstone papers and ultimately narrowing the field to 11 relevant articles. These selected articles propose solutions that leverage the semantics of business vocabulary and business rules (SBVR) or decision model and notation (DMN) as a "bridge" to produce code in object constraint language (OCL), entity-relationship (ER) diagrams, or extensible markup language (XML). Our findings suggest that while these solutions are valuable, they fall short of generating BR code in diverse programming languages such as C, Java, or Python. To address this gap, we aim to create a prototype that can effectively translate natural language into machine-readable code. This thesis is part of a larger project called "Hydra Code Generation Tool (HydraCGT)," which belongs to the Department of the University of Madeira – Office for the Development of Information Technology Applications (GDAI).
publishDate 2025
dc.date.none.fl_str_mv 2025-02-28T11:38:53Z
2025-01-16
2025-01-16T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/7183
urn:tid:203899466
url http://hdl.handle.net/10400.13/7183
identifier_str_mv urn:tid:203899466
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600401634492416