The linear algebra behind Google

Detalhes bibliográficos
Autor(a) principal: Bah, Tijan
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/41897
Resumo: Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores.
id RCAP_ebac68a6368e5c94a6013d793793d22a
oai_identifier_str oai:ria.ua.pt:10773/41897
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The linear algebra behind GooglePageRankLinear algebraEigenvectorEigenvaluesGoogle matrixLink matrixGoogle PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores.O modelo PageRank do Google avalia a importância das ligações entre vértices em grafos com um grande número de vértices tais como o grafo da World Wide Web. Uma peça importante do modelo PageRank é o fator de amortecimento d. A fundação do Google depende de conceitos da Álgebra Linear para avaliar e classificar páginas da web tendo em atenção a sua importância e relevância. Nesta dissertação, a matemática básica para perceber como este algoritmo funciona é apresentada. Conceitos da teoria das matrizes e teoria dos grafos são apresentados como background, enquanto que os passos mais importantes são apresentados num contexto da Álgebra Linear, dando-se destaque ao conceito de valor e vetor próprio. É discutido um método iterativo para encontrar o vetor próprio principal que é importante para classificar páginas.2024-05-20T09:55:03Z2023-11-20T00:00:00Z2023-11-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41897engBah, Tijaninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-27T01:46:42Zoai:ria.ua.pt:10773/41897Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:52:33.713007Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The linear algebra behind Google
title The linear algebra behind Google
spellingShingle The linear algebra behind Google
Bah, Tijan
PageRank
Linear algebra
Eigenvector
Eigenvalues
Google matrix
Link matrix
title_short The linear algebra behind Google
title_full The linear algebra behind Google
title_fullStr The linear algebra behind Google
title_full_unstemmed The linear algebra behind Google
title_sort The linear algebra behind Google
author Bah, Tijan
author_facet Bah, Tijan
author_role author
dc.contributor.author.fl_str_mv Bah, Tijan
dc.subject.por.fl_str_mv PageRank
Linear algebra
Eigenvector
Eigenvalues
Google matrix
Link matrix
topic PageRank
Linear algebra
Eigenvector
Eigenvalues
Google matrix
Link matrix
description Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-20T00:00:00Z
2023-11-20
2024-05-20T09:55:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41897
url http://hdl.handle.net/10773/41897
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597029802049536