The linear algebra behind Google
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/41897 |
Resumo: | Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. |
| id |
RCAP_ebac68a6368e5c94a6013d793793d22a |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/41897 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
The linear algebra behind GooglePageRankLinear algebraEigenvectorEigenvaluesGoogle matrixLink matrixGoogle PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores.O modelo PageRank do Google avalia a importância das ligações entre vértices em grafos com um grande número de vértices tais como o grafo da World Wide Web. Uma peça importante do modelo PageRank é o fator de amortecimento d. A fundação do Google depende de conceitos da Álgebra Linear para avaliar e classificar páginas da web tendo em atenção a sua importância e relevância. Nesta dissertação, a matemática básica para perceber como este algoritmo funciona é apresentada. Conceitos da teoria das matrizes e teoria dos grafos são apresentados como background, enquanto que os passos mais importantes são apresentados num contexto da Álgebra Linear, dando-se destaque ao conceito de valor e vetor próprio. É discutido um método iterativo para encontrar o vetor próprio principal que é importante para classificar páginas.2024-05-20T09:55:03Z2023-11-20T00:00:00Z2023-11-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41897engBah, Tijaninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-27T01:46:42Zoai:ria.ua.pt:10773/41897Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:52:33.713007Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
The linear algebra behind Google |
| title |
The linear algebra behind Google |
| spellingShingle |
The linear algebra behind Google Bah, Tijan PageRank Linear algebra Eigenvector Eigenvalues Google matrix Link matrix |
| title_short |
The linear algebra behind Google |
| title_full |
The linear algebra behind Google |
| title_fullStr |
The linear algebra behind Google |
| title_full_unstemmed |
The linear algebra behind Google |
| title_sort |
The linear algebra behind Google |
| author |
Bah, Tijan |
| author_facet |
Bah, Tijan |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Bah, Tijan |
| dc.subject.por.fl_str_mv |
PageRank Linear algebra Eigenvector Eigenvalues Google matrix Link matrix |
| topic |
PageRank Linear algebra Eigenvector Eigenvalues Google matrix Link matrix |
| description |
Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. Google PageRank model helps evaluate the relative importance of nodes in a large graph, such as the graph of links on the World Wide Web. An important piece of the PageRank model is the damping factor d. Google relies on foundational concepts from linear algebra to evaluate and rank web pages based on their importance and relevance. In this thesis, the underlying mathematical basics for understanding how the algorithms function are provided. The concept of graphs and matrix theories are in the background, while the most important steps are in a linear algebra context especially the eigenvalue and eigenvectors of a matrix. It discusses the power iteration algorithm as an iterative method for finding the principal eigenvector, which represents PageRank scores. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-11-20T00:00:00Z 2023-11-20 2024-05-20T09:55:03Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41897 |
| url |
http://hdl.handle.net/10773/41897 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597029802049536 |