Understanding participation through a data-driven approach
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10071/28830 |
Summary: | Participatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration. |
| id |
RCAP_e9ec79b6e869d3b9f07504b491301510 |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/28830 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Understanding participation through a data-driven approachParticipatory strategiesParticipation evaluationData-driven evaluationUnsupervised learningData visualizationParticipatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration.Universidad Peruana de Ciencias Aplicadas (UPC)2023-06-26T14:59:53Z2022-01-01T00:00:00Z20222023-06-26T15:59:16Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/28830eng978-612-318-444-5Pappa, A.Paio, A.Duering, S.Chronis, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:22:58Zoai:repositorio.iscte-iul.pt:10071/28830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:22:07.083593Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Understanding participation through a data-driven approach |
| title |
Understanding participation through a data-driven approach |
| spellingShingle |
Understanding participation through a data-driven approach Pappa, A. Participatory strategies Participation evaluation Data-driven evaluation Unsupervised learning Data visualization |
| title_short |
Understanding participation through a data-driven approach |
| title_full |
Understanding participation through a data-driven approach |
| title_fullStr |
Understanding participation through a data-driven approach |
| title_full_unstemmed |
Understanding participation through a data-driven approach |
| title_sort |
Understanding participation through a data-driven approach |
| author |
Pappa, A. |
| author_facet |
Pappa, A. Paio, A. Duering, S. Chronis, A. |
| author_role |
author |
| author2 |
Paio, A. Duering, S. Chronis, A. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Pappa, A. Paio, A. Duering, S. Chronis, A. |
| dc.subject.por.fl_str_mv |
Participatory strategies Participation evaluation Data-driven evaluation Unsupervised learning Data visualization |
| topic |
Participatory strategies Participation evaluation Data-driven evaluation Unsupervised learning Data visualization |
| description |
Participatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-01-01T00:00:00Z 2022 2023-06-26T14:59:53Z 2023-06-26T15:59:16Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/28830 |
| url |
http://hdl.handle.net/10071/28830 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-612-318-444-5 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) |
| publisher.none.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597363737853952 |