Understanding participation through a data-driven approach

Bibliographic Details
Main Author: Pappa, A.
Publication Date: 2022
Other Authors: Paio, A., Duering, S., Chronis, A.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/28830
Summary: Participatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration.
id RCAP_e9ec79b6e869d3b9f07504b491301510
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/28830
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Understanding participation through a data-driven approachParticipatory strategiesParticipation evaluationData-driven evaluationUnsupervised learningData visualizationParticipatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration.Universidad Peruana de Ciencias Aplicadas (UPC)2023-06-26T14:59:53Z2022-01-01T00:00:00Z20222023-06-26T15:59:16Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/28830eng978-612-318-444-5Pappa, A.Paio, A.Duering, S.Chronis, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:22:58Zoai:repositorio.iscte-iul.pt:10071/28830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:22:07.083593Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Understanding participation through a data-driven approach
title Understanding participation through a data-driven approach
spellingShingle Understanding participation through a data-driven approach
Pappa, A.
Participatory strategies
Participation evaluation
Data-driven evaluation
Unsupervised learning
Data visualization
title_short Understanding participation through a data-driven approach
title_full Understanding participation through a data-driven approach
title_fullStr Understanding participation through a data-driven approach
title_full_unstemmed Understanding participation through a data-driven approach
title_sort Understanding participation through a data-driven approach
author Pappa, A.
author_facet Pappa, A.
Paio, A.
Duering, S.
Chronis, A.
author_role author
author2 Paio, A.
Duering, S.
Chronis, A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Pappa, A.
Paio, A.
Duering, S.
Chronis, A.
dc.subject.por.fl_str_mv Participatory strategies
Participation evaluation
Data-driven evaluation
Unsupervised learning
Data visualization
topic Participatory strategies
Participation evaluation
Data-driven evaluation
Unsupervised learning
Data visualization
description Participatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01T00:00:00Z
2022
2023-06-26T14:59:53Z
2023-06-26T15:59:16Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/28830
url http://hdl.handle.net/10071/28830
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-612-318-444-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
publisher.none.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597363737853952