Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain

Bibliographic Details
Main Author: Diogo Rodrigues
Publication Date: 2023
Other Authors: Clara Monteiro, Helder Cardoso-Cruz, Vasco Galhardo
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/148961
Summary: The role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different CNS regions related to nociception, namely the dorsal root ganglia, the spinal cord, and different brain areas. Decreased global methylation was found in the DRG, the prefrontal cortex, and the amygdala, which was associated with decreased DNMT1/3a expression. In contrast, increased methylation levels and mRNA levels of TET1 and TET3 were linked to augmented pain hypersensitivity and allodynia in inflammatory and neuropathic pain models. Since epigenetic mechanisms may be responsible for the regulation and coordination of various transcriptional modifications described in chronic pain states, with this study, we aimed to evaluate the functional role of TET1-3 and DNMT1/3a genes in neuropathic pain in several brain areas. In a spared nerve injury rat model of neuropathic pain, 21 days after surgery, we found increased TET1 expression in the medial prefrontal cortex and decreased expression in the caudate-putamen and the amygdala; TET2 was upregulated in the medial thalamus; TET3 mRNA levels were reduced in the medial prefrontal cortex and the caudate-putamen; and DNMT1 was downregulated in the caudate-putamen and the medial thalamus. No statistically significant changes in expression were observed with DNMT3a. Our results suggest a complex functional role for these genes in different brain areas in the context of neuropathic pain. The notion of DNA methylation and hydroxymethylation being cell-type specific and not tissue specific, as well as the possibility of chronologically differential gene expression after the establishment of neuropathic or inflammatory pain models, ought to be addressed in future studies.
id RCAP_e91789abf7dcd675d44df799ef30d3d6
oai_identifier_str oai:repositorio-aberto.up.pt:10216/148961
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic PainNeurociências, Medicina básicaNeuroscience, Basic medicineThe role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different CNS regions related to nociception, namely the dorsal root ganglia, the spinal cord, and different brain areas. Decreased global methylation was found in the DRG, the prefrontal cortex, and the amygdala, which was associated with decreased DNMT1/3a expression. In contrast, increased methylation levels and mRNA levels of TET1 and TET3 were linked to augmented pain hypersensitivity and allodynia in inflammatory and neuropathic pain models. Since epigenetic mechanisms may be responsible for the regulation and coordination of various transcriptional modifications described in chronic pain states, with this study, we aimed to evaluate the functional role of TET1-3 and DNMT1/3a genes in neuropathic pain in several brain areas. In a spared nerve injury rat model of neuropathic pain, 21 days after surgery, we found increased TET1 expression in the medial prefrontal cortex and decreased expression in the caudate-putamen and the amygdala; TET2 was upregulated in the medial thalamus; TET3 mRNA levels were reduced in the medial prefrontal cortex and the caudate-putamen; and DNMT1 was downregulated in the caudate-putamen and the medial thalamus. No statistically significant changes in expression were observed with DNMT3a. Our results suggest a complex functional role for these genes in different brain areas in the context of neuropathic pain. The notion of DNA methylation and hydroxymethylation being cell-type specific and not tissue specific, as well as the possibility of chronologically differential gene expression after the establishment of neuropathic or inflammatory pain models, ought to be addressed in future studies.2023-04-152023-04-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/148961eng1661-659610.3390/ijms24087305Diogo RodriguesClara MonteiroHelder Cardoso-CruzVasco Galhardoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T20:07:27Zoai:repositorio-aberto.up.pt:10216/148961Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T23:51:09.869750Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
title Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
spellingShingle Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
Diogo Rodrigues
Neurociências, Medicina básica
Neuroscience, Basic medicine
title_short Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
title_full Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
title_fullStr Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
title_full_unstemmed Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
title_sort Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
author Diogo Rodrigues
author_facet Diogo Rodrigues
Clara Monteiro
Helder Cardoso-Cruz
Vasco Galhardo
author_role author
author2 Clara Monteiro
Helder Cardoso-Cruz
Vasco Galhardo
author2_role author
author
author
dc.contributor.author.fl_str_mv Diogo Rodrigues
Clara Monteiro
Helder Cardoso-Cruz
Vasco Galhardo
dc.subject.por.fl_str_mv Neurociências, Medicina básica
Neuroscience, Basic medicine
topic Neurociências, Medicina básica
Neuroscience, Basic medicine
description The role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different CNS regions related to nociception, namely the dorsal root ganglia, the spinal cord, and different brain areas. Decreased global methylation was found in the DRG, the prefrontal cortex, and the amygdala, which was associated with decreased DNMT1/3a expression. In contrast, increased methylation levels and mRNA levels of TET1 and TET3 were linked to augmented pain hypersensitivity and allodynia in inflammatory and neuropathic pain models. Since epigenetic mechanisms may be responsible for the regulation and coordination of various transcriptional modifications described in chronic pain states, with this study, we aimed to evaluate the functional role of TET1-3 and DNMT1/3a genes in neuropathic pain in several brain areas. In a spared nerve injury rat model of neuropathic pain, 21 days after surgery, we found increased TET1 expression in the medial prefrontal cortex and decreased expression in the caudate-putamen and the amygdala; TET2 was upregulated in the medial thalamus; TET3 mRNA levels were reduced in the medial prefrontal cortex and the caudate-putamen; and DNMT1 was downregulated in the caudate-putamen and the medial thalamus. No statistically significant changes in expression were observed with DNMT3a. Our results suggest a complex functional role for these genes in different brain areas in the context of neuropathic pain. The notion of DNA methylation and hydroxymethylation being cell-type specific and not tissue specific, as well as the possibility of chronologically differential gene expression after the establishment of neuropathic or inflammatory pain models, ought to be addressed in future studies.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-15
2023-04-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/148961
url https://hdl.handle.net/10216/148961
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-6596
10.3390/ijms24087305
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600315579957248