Mapping human pathogens in wastewater using a metatranscriptomic approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10773/37806 |
Resumo: | The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species. |
id |
RCAP_e544d1ecef0afed2d136bcc59ebd09c5 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/37806 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Mapping human pathogens in wastewater using a metatranscriptomic approachHuman pathogensWastewaterMetatranscriptomicsPublic healthThe monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species.Elsevier2023-05-19T14:07:30Z2023-08-15T00:00:00Z2023-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37806eng0013-935110.1016/j.envres.2023.116040Carneiro, JoãoPascoal, FranciscoSemedo, MiguelPratas, DiogoTomasino, Maria PaolaRego, AdrianaCarvalho, Maria de FátimaMucha, Ana PaulaMagalhães, Catarinainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:46:22Zoai:ria.ua.pt:10773/37806Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:19:37.984211Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
title |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
spellingShingle |
Mapping human pathogens in wastewater using a metatranscriptomic approach Carneiro, João Human pathogens Wastewater Metatranscriptomics Public health |
title_short |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
title_full |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
title_fullStr |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
title_full_unstemmed |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
title_sort |
Mapping human pathogens in wastewater using a metatranscriptomic approach |
author |
Carneiro, João |
author_facet |
Carneiro, João Pascoal, Francisco Semedo, Miguel Pratas, Diogo Tomasino, Maria Paola Rego, Adriana Carvalho, Maria de Fátima Mucha, Ana Paula Magalhães, Catarina |
author_role |
author |
author2 |
Pascoal, Francisco Semedo, Miguel Pratas, Diogo Tomasino, Maria Paola Rego, Adriana Carvalho, Maria de Fátima Mucha, Ana Paula Magalhães, Catarina |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Carneiro, João Pascoal, Francisco Semedo, Miguel Pratas, Diogo Tomasino, Maria Paola Rego, Adriana Carvalho, Maria de Fátima Mucha, Ana Paula Magalhães, Catarina |
dc.subject.por.fl_str_mv |
Human pathogens Wastewater Metatranscriptomics Public health |
topic |
Human pathogens Wastewater Metatranscriptomics Public health |
description |
The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-19T14:07:30Z 2023-08-15T00:00:00Z 2023-08-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37806 |
url |
http://hdl.handle.net/10773/37806 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0013-9351 10.1016/j.envres.2023.116040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594503282294784 |