A dynamic code coverage approach to maximize fault localization efficiency

Detalhes bibliográficos
Autor(a) principal: Alexandre Campos Perez
Data de Publicação: 2014
Outros Autores: Rui Maranhão, Riboira,A
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/6193
http://dx.doi.org/10.1016/j.jss.2013.12.036
Resumo: Spectrum-based fault localization is amongst the most effective techniques for automatic fault localization. However, abstractions of program execution traces, one of the required inputs for this technique, require instrumentation of the software under test at a statement level of granularity in order to compute a list of potential faulty statements. This introduces a considerable overhead in the fault localization process, which can even become prohibitive in, e.g., resource constrained environments. To counter this problem, we propose a new approach, coined dynamic code coverage (DCC), aimed at reducing this instrumentation overhead. This technique, by means of using coarser instrumentation, starts by analyzing coverage traces for large components of the system under test. It then progressively increases the instrumentation detail for faulty components, until the statement level of detail is reached. To assess the validity of our proposed approach, an empirical evaluation was performed, injecting faults in six real-world software projects. The empirical evaluation demonstrates that the dynamic code coverage approach reduces the execution overhead that exists in spectrum-based fault localization, and even presents,a more concise potential fault ranking to the user. We have observed execution time reductions of 27% on average and diagnostic report size reductions of 77% on average.
id RCAP_e36c7888b5fccba9f7e01ba23bedee29
oai_identifier_str oai:repositorio.inesctec.pt:123456789/6193
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A dynamic code coverage approach to maximize fault localization efficiencySpectrum-based fault localization is amongst the most effective techniques for automatic fault localization. However, abstractions of program execution traces, one of the required inputs for this technique, require instrumentation of the software under test at a statement level of granularity in order to compute a list of potential faulty statements. This introduces a considerable overhead in the fault localization process, which can even become prohibitive in, e.g., resource constrained environments. To counter this problem, we propose a new approach, coined dynamic code coverage (DCC), aimed at reducing this instrumentation overhead. This technique, by means of using coarser instrumentation, starts by analyzing coverage traces for large components of the system under test. It then progressively increases the instrumentation detail for faulty components, until the statement level of detail is reached. To assess the validity of our proposed approach, an empirical evaluation was performed, injecting faults in six real-world software projects. The empirical evaluation demonstrates that the dynamic code coverage approach reduces the execution overhead that exists in spectrum-based fault localization, and even presents,a more concise potential fault ranking to the user. We have observed execution time reductions of 27% on average and diagnostic report size reductions of 77% on average.2018-01-15T16:31:57Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6193http://dx.doi.org/10.1016/j.jss.2013.12.036engAlexandre Campos PerezRui MaranhãoRiboira,Ainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:20:05Zoai:repositorio.inesctec.pt:123456789/6193Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:56:36.051154Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A dynamic code coverage approach to maximize fault localization efficiency
title A dynamic code coverage approach to maximize fault localization efficiency
spellingShingle A dynamic code coverage approach to maximize fault localization efficiency
Alexandre Campos Perez
title_short A dynamic code coverage approach to maximize fault localization efficiency
title_full A dynamic code coverage approach to maximize fault localization efficiency
title_fullStr A dynamic code coverage approach to maximize fault localization efficiency
title_full_unstemmed A dynamic code coverage approach to maximize fault localization efficiency
title_sort A dynamic code coverage approach to maximize fault localization efficiency
author Alexandre Campos Perez
author_facet Alexandre Campos Perez
Rui Maranhão
Riboira,A
author_role author
author2 Rui Maranhão
Riboira,A
author2_role author
author
dc.contributor.author.fl_str_mv Alexandre Campos Perez
Rui Maranhão
Riboira,A
description Spectrum-based fault localization is amongst the most effective techniques for automatic fault localization. However, abstractions of program execution traces, one of the required inputs for this technique, require instrumentation of the software under test at a statement level of granularity in order to compute a list of potential faulty statements. This introduces a considerable overhead in the fault localization process, which can even become prohibitive in, e.g., resource constrained environments. To counter this problem, we propose a new approach, coined dynamic code coverage (DCC), aimed at reducing this instrumentation overhead. This technique, by means of using coarser instrumentation, starts by analyzing coverage traces for large components of the system under test. It then progressively increases the instrumentation detail for faulty components, until the statement level of detail is reached. To assess the validity of our proposed approach, an empirical evaluation was performed, injecting faults in six real-world software projects. The empirical evaluation demonstrates that the dynamic code coverage approach reduces the execution overhead that exists in spectrum-based fault localization, and even presents,a more concise potential fault ranking to the user. We have observed execution time reductions of 27% on average and diagnostic report size reductions of 77% on average.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2018-01-15T16:31:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/6193
http://dx.doi.org/10.1016/j.jss.2013.12.036
url http://repositorio.inesctec.pt/handle/123456789/6193
http://dx.doi.org/10.1016/j.jss.2013.12.036
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597769771646976