Ensuring privacy when querying distributed databases
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/35125 |
Summary: | Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies. |
| id |
RCAP_ddf207b464e4120aab28773aefaa6fc3 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/35125 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Ensuring privacy when querying distributed databasesPrivacy preservingData anonymisationk-Anonymityl-DiversityAnonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies.A garantia da anonimização de dados é atualmente um dos maiores desafios quando existe a necessidade de partilhar informações pessoais de carácter sensível. Apesar de ser um problema transversal a muitos domínios de aplicação, este torna-se mais crítico quando a anonimização envolve dados clinicos. Nestes casos, a abordagem mais comum para evitar a divulgação de dados, que possam ser associados diretamente a um indivíduo, consiste na remoção de atributos identificadores. No entanto, segundo a literatura, esta abordagem não oferece uma garantia total de anonimato, que pode ser quebrada através de ataques específicos que permitem a reidentificação dos sujeitos. Neste trabalho, é proposta uma arquitetura que permite partilhar dados armazenados em repositórios distribuídos, de forma segura e sem comprometer a privacidade. Numa primeira fase deste trabalho, foi feita uma análise de técnicas que permitam reverter os procedimentos de anonimização. Na fase seguinte, foi proposta uma metodologia que permite realizar pesquisas em bases de dados distribuídas, sem que o anonimato seja quebrado. Esta arquitetura foi validada sobre um esquema de base de dados relacional que é amplamente utilizado em estudos clínicos observacionais.2022-11-04T15:04:22Z2022-07-20T00:00:00Z2022-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/35125engAlmeida, João Rafael Duarte deinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:40:21Zoai:ria.ua.pt:10773/35125Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:16:31.911398Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Ensuring privacy when querying distributed databases |
| title |
Ensuring privacy when querying distributed databases |
| spellingShingle |
Ensuring privacy when querying distributed databases Almeida, João Rafael Duarte de Privacy preserving Data anonymisation k-Anonymity l-Diversity |
| title_short |
Ensuring privacy when querying distributed databases |
| title_full |
Ensuring privacy when querying distributed databases |
| title_fullStr |
Ensuring privacy when querying distributed databases |
| title_full_unstemmed |
Ensuring privacy when querying distributed databases |
| title_sort |
Ensuring privacy when querying distributed databases |
| author |
Almeida, João Rafael Duarte de |
| author_facet |
Almeida, João Rafael Duarte de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Almeida, João Rafael Duarte de |
| dc.subject.por.fl_str_mv |
Privacy preserving Data anonymisation k-Anonymity l-Diversity |
| topic |
Privacy preserving Data anonymisation k-Anonymity l-Diversity |
| description |
Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-11-04T15:04:22Z 2022-07-20T00:00:00Z 2022-07-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35125 |
| url |
http://hdl.handle.net/10773/35125 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594453650046976 |