Full Inclusive Genetic Programming
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/172917 |
Resumo: | Marchetti, F., Castelli, M., Bakurov, I., & Vanneschi, L. (2024). Full Inclusive Genetic Programming. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10611808 --- This work was partially supported by FCT, Portugal, through funding of research unit MagIC/NOVA IMS (UIDB/04152/2020); and by the SPECIES Society through the SPECIES Scholarship 2022. |
| id |
RCAP_ddbd89fb717ed9688436b1f7feeef0a4 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/172917 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Full Inclusive Genetic ProgrammingGenetic ProgrammingPopulation’s DiversitySymbolic RegressionPMLB BenchmarksPopulation InitializationArtificial IntelligenceComputer Science ApplicationsComputer Vision and Pattern RecognitionComputational MathematicsControl and OptimizationMarchetti, F., Castelli, M., Bakurov, I., & Vanneschi, L. (2024). Full Inclusive Genetic Programming. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10611808 --- This work was partially supported by FCT, Portugal, through funding of research unit MagIC/NOVA IMS (UIDB/04152/2020); and by the SPECIES Society through the SPECIES Scholarship 2022.This manuscript presents an improved version of the Inclusive Genetic Programming (IGP) algorithm. The IGP was developed to promote and maintain the population's genotypic diversity and showed superior performance compared to standard Genetic Programming (GP). In this work, two modifications to the IGP are proposed: first, the diversity promotion and maintenance mechanism is enhanced with information from the phenotype of the individuals rather than only the genotype; second, the Evolutionary Demes Despeciation Algorithm - V2 (EDDA-V2) is used to initialize the population. The phenotype is considered to differentiate the individuals also according to their behaviour rather than only their structure, while EDDA-V2 is employed to start the evolution with a simultaneously diverse and fit population, contrary to traditional initialization techniques. The algorithms incorporating these improvements are called Full Inclusive Genetic Programming (FIGP) and FIGP _E, respectively with and without the EDDA-V2 initialization. The experimental results, performed over eight benchmarks and considering six algorithms, demonstrate the superior performance of FIGP and FIGP _E in comparison to other GP formulations. Moreover, the EDDA-V2 initialization allows for a significant reduction of the computational time.Institute of Electrical and Electronics Engineers (IEEE)Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNMarchetti, FrancescoCastelli, MauroBakurov, IllyaVanneschi, Leonardo20242026-08-08T00:00:00Z2024-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfhttp://hdl.handle.net/10362/172917eng979-8-3503-0837-2PURE: 85913472https://doi.org/10.1109/CEC60901.2024.10611808info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-07T01:41:13Zoai:run.unl.pt:10362/172917Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:55:27.841067Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Full Inclusive Genetic Programming |
| title |
Full Inclusive Genetic Programming |
| spellingShingle |
Full Inclusive Genetic Programming Marchetti, Francesco Genetic Programming Population’s Diversity Symbolic Regression PMLB Benchmarks Population Initialization Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| title_short |
Full Inclusive Genetic Programming |
| title_full |
Full Inclusive Genetic Programming |
| title_fullStr |
Full Inclusive Genetic Programming |
| title_full_unstemmed |
Full Inclusive Genetic Programming |
| title_sort |
Full Inclusive Genetic Programming |
| author |
Marchetti, Francesco |
| author_facet |
Marchetti, Francesco Castelli, Mauro Bakurov, Illya Vanneschi, Leonardo |
| author_role |
author |
| author2 |
Castelli, Mauro Bakurov, Illya Vanneschi, Leonardo |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Marchetti, Francesco Castelli, Mauro Bakurov, Illya Vanneschi, Leonardo |
| dc.subject.por.fl_str_mv |
Genetic Programming Population’s Diversity Symbolic Regression PMLB Benchmarks Population Initialization Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| topic |
Genetic Programming Population’s Diversity Symbolic Regression PMLB Benchmarks Population Initialization Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| description |
Marchetti, F., Castelli, M., Bakurov, I., & Vanneschi, L. (2024). Full Inclusive Genetic Programming. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10611808 --- This work was partially supported by FCT, Portugal, through funding of research unit MagIC/NOVA IMS (UIDB/04152/2020); and by the SPECIES Society through the SPECIES Scholarship 2022. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 2024-01-01T00:00:00Z 2026-08-08T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/172917 |
| url |
http://hdl.handle.net/10362/172917 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
979-8-3503-0837-2 PURE: 85913472 https://doi.org/10.1109/CEC60901.2024.10611808 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
8 application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597757307224064 |