Data mining approach for range prediction of electric vehicle
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/19439 |
Summary: | Our work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map. |
id |
RCAP_dc8a7b00dd8123b9a1f92d9f93e36bb3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/19439 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Data mining approach for range prediction of electric vehicleRange predictionData miningDriver profileRange anxiety problemElectric vehicleOur work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map.Fundação para a Ciência e a Tecnologia (FCT)Universidade do MinhoFerreira, João C.Monteiro, Vítor Duarte FernandesAfonso, João L.2012-032012-03-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/19439enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:49:16Zoai:repositorium.sdum.uminho.pt:1822/19439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:59:41.659134Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Data mining approach for range prediction of electric vehicle |
title |
Data mining approach for range prediction of electric vehicle |
spellingShingle |
Data mining approach for range prediction of electric vehicle Ferreira, João C. Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
title_short |
Data mining approach for range prediction of electric vehicle |
title_full |
Data mining approach for range prediction of electric vehicle |
title_fullStr |
Data mining approach for range prediction of electric vehicle |
title_full_unstemmed |
Data mining approach for range prediction of electric vehicle |
title_sort |
Data mining approach for range prediction of electric vehicle |
author |
Ferreira, João C. |
author_facet |
Ferreira, João C. Monteiro, Vítor Duarte Fernandes Afonso, João L. |
author_role |
author |
author2 |
Monteiro, Vítor Duarte Fernandes Afonso, João L. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, João C. Monteiro, Vítor Duarte Fernandes Afonso, João L. |
dc.subject.por.fl_str_mv |
Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
topic |
Range prediction Data mining Driver profile Range anxiety problem Electric vehicle |
description |
Our work proposal is based on the past driving data that are stored in a driver profile, and using real time information about the Electric Vehicle parameters (e.g. speed and energy stored in the batteries), combined with external parameters (e.g. condi-tions of roads, traffic, and weather), determine the range autonomy accurately, taking into account the historical driver behavior. The driver profile is based on the stored data, which acts as training set for a Data Mining approach, in order to estimate the Electric Vehicle range. The Data Mining approach uses a regression model aiming to find the better range autonomy, which is used to represent the current Electric Vehicle range autonomy on a map. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 2012-03-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/19439 |
url |
http://hdl.handle.net/1822/19439 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595026827902976 |