Explorations of the Semantic Learning Machine Neuroevolution Algorithm
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/142672 |
Resumo: | Gonçalves, I., Seca, M., & Castelli, M. (2020). Explorations of the Semantic Learning Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble Construction Methods, and Deep Learning Perspectives. In W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo, & B. Worzel (Eds.), Genetic Programming Theory and Practice XVII: Genetic and Evolutionary Computation (pp. 39-62). [Chapter 3] (Genetic Programming Theory and Practice XVII). Springer. https://doi.org/10.1007/978-3-030-39958-0_3 |
| id |
RCAP_dc56f158446b0b74ef9c8910abc6afd5 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/142672 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Explorations of the Semantic Learning Machine Neuroevolution AlgorithmDynamic Training Data Use, Ensemble Construction Methods, and Deep Learning PerspectivesGonçalves, I., Seca, M., & Castelli, M. (2020). Explorations of the Semantic Learning Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble Construction Methods, and Deep Learning Perspectives. In W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo, & B. Worzel (Eds.), Genetic Programming Theory and Practice XVII: Genetic and Evolutionary Computation (pp. 39-62). [Chapter 3] (Genetic Programming Theory and Practice XVII). Springer. https://doi.org/10.1007/978-3-030-39958-0_3The recently proposed Semantic Learning Machine (SLM) neuroevolution algorithm is able to construct Neural Networks (NNs) over unimodal error landscapes in any supervised learning problem where the error is measured as a distance to the known targets. This chapter studies how different methods of dynamically using the training data affect the resulting generalization of the SLM algorithm. Across four real-world binary classification datasets, SLM is shown to outperform the Multi-layer Perceptron, with statistical significance, after parameter tuning is performed in both algorithms. Furthermore, this chapter also studies how different ensemble constructions methods influence the resulting generalization. The results show that the stochastic nature of SLM already confers enough diversity to the ensembles such that Bagging and Boosting cannot improve upon a simple averaging ensemble construction method. Finally, some initial results with SLM and Convolutional NNs are presented and future Deep Learning perspectives are discussed.SpringerNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNGonçalves, IvoSeca, MartaCastelli, Mauro2022-07-29T22:15:15Z2020-05-082020-05-08T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/142672eng978-3-030-39957-31932-0167PURE: 27629624https://doi.org/10.1007/978-3-030-39958-0_3info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:04:08Zoai:run.unl.pt:10362/142672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:34:41.981327Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm Dynamic Training Data Use, Ensemble Construction Methods, and Deep Learning Perspectives |
| title |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| spellingShingle |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm Gonçalves, Ivo |
| title_short |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| title_full |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| title_fullStr |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| title_full_unstemmed |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| title_sort |
Explorations of the Semantic Learning Machine Neuroevolution Algorithm |
| author |
Gonçalves, Ivo |
| author_facet |
Gonçalves, Ivo Seca, Marta Castelli, Mauro |
| author_role |
author |
| author2 |
Seca, Marta Castelli, Mauro |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Gonçalves, Ivo Seca, Marta Castelli, Mauro |
| description |
Gonçalves, I., Seca, M., & Castelli, M. (2020). Explorations of the Semantic Learning Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble Construction Methods, and Deep Learning Perspectives. In W. Banzhaf, E. Goodman, L. Sheneman, L. Trujillo, & B. Worzel (Eds.), Genetic Programming Theory and Practice XVII: Genetic and Evolutionary Computation (pp. 39-62). [Chapter 3] (Genetic Programming Theory and Practice XVII). Springer. https://doi.org/10.1007/978-3-030-39958-0_3 |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-05-08 2020-05-08T00:00:00Z 2022-07-29T22:15:15Z |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/142672 |
| url |
http://hdl.handle.net/10362/142672 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-030-39957-3 1932-0167 PURE: 27629624 https://doi.org/10.1007/978-3-030-39958-0_3 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596809319022592 |