Geomechanical parameters updating in an underground work

Bibliographic Details
Main Author: Miranda, Tiago F. S.
Publication Date: 2007
Other Authors: Correia, A. Gomes, Sousa, L. R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/8791
Summary: In geotechnical engineering, and in the particular case of underground works, a great number of uncertainties arise due to the lack of knowledge of the involved formations and their variability. Geomechanical parameters are one of the main issues in the underground works design. In the initial stages, the available information about the rock masses characteristics is scarce. As the project advances to other stages more and more information from different sources becomes available and can be used for updating the geomechanical model. Bayesian methodologies use probability as the main tool to deal with uncertainty and manage to reduce it using new data via the Bayes theorem. In this work, a part of a developed Bayesian framework to the updating of the deformability modulus (E) in an underground structure is presented. Assuming E as a random variable, data from LFJ tests is used to obtain a posterior and less uncertain distribution of E. This approach led to good results and considerable uncertainty reduction and increased reliability. The developed Bayesian framework constitutes a rational and structured way of dealing with data with different sources and uncertainty levels.
id RCAP_d46c5e2a103f694d8f4b4c11f1cc3266
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/8791
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Geomechanical parameters updating in an underground workIn geotechnical engineering, and in the particular case of underground works, a great number of uncertainties arise due to the lack of knowledge of the involved formations and their variability. Geomechanical parameters are one of the main issues in the underground works design. In the initial stages, the available information about the rock masses characteristics is scarce. As the project advances to other stages more and more information from different sources becomes available and can be used for updating the geomechanical model. Bayesian methodologies use probability as the main tool to deal with uncertainty and manage to reduce it using new data via the Bayes theorem. In this work, a part of a developed Bayesian framework to the updating of the deformability modulus (E) in an underground structure is presented. Assuming E as a random variable, data from LFJ tests is used to obtain a posterior and less uncertain distribution of E. This approach led to good results and considerable uncertainty reduction and increased reliability. The developed Bayesian framework constitutes a rational and structured way of dealing with data with different sources and uncertainty levels.Fundação para a Ciência e a Tecnologia (FCT) - projecto POCI/ECM/57495/2004 entitled “Geotechnical Risk inTunnels for High Speed Trains”.Internacional Society of Rock Mechanics (ISRM)Universidade do MinhoMiranda, Tiago F. S.Correia, A. GomesSousa, L. R.20072007-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/1822/8791engSOUSA, Luís Ribeiro e ; OLALLA, Cláudio ; GROSSMAN, Nuno F., eds. – “11th Congress of the International Society for Rock Mechanics : proceedings..., Lisboa, Portugal, 2007.” [S.l.] : ISRM, 2007. Vol. 1. p. 909-912.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:26:58Zoai:repositorium.sdum.uminho.pt:1822/8791Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:27:25.809284Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Geomechanical parameters updating in an underground work
title Geomechanical parameters updating in an underground work
spellingShingle Geomechanical parameters updating in an underground work
Miranda, Tiago F. S.
title_short Geomechanical parameters updating in an underground work
title_full Geomechanical parameters updating in an underground work
title_fullStr Geomechanical parameters updating in an underground work
title_full_unstemmed Geomechanical parameters updating in an underground work
title_sort Geomechanical parameters updating in an underground work
author Miranda, Tiago F. S.
author_facet Miranda, Tiago F. S.
Correia, A. Gomes
Sousa, L. R.
author_role author
author2 Correia, A. Gomes
Sousa, L. R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Miranda, Tiago F. S.
Correia, A. Gomes
Sousa, L. R.
description In geotechnical engineering, and in the particular case of underground works, a great number of uncertainties arise due to the lack of knowledge of the involved formations and their variability. Geomechanical parameters are one of the main issues in the underground works design. In the initial stages, the available information about the rock masses characteristics is scarce. As the project advances to other stages more and more information from different sources becomes available and can be used for updating the geomechanical model. Bayesian methodologies use probability as the main tool to deal with uncertainty and manage to reduce it using new data via the Bayes theorem. In this work, a part of a developed Bayesian framework to the updating of the deformability modulus (E) in an underground structure is presented. Assuming E as a random variable, data from LFJ tests is used to obtain a posterior and less uncertain distribution of E. This approach led to good results and considerable uncertainty reduction and increased reliability. The developed Bayesian framework constitutes a rational and structured way of dealing with data with different sources and uncertainty levels.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/8791
url http://hdl.handle.net/1822/8791
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SOUSA, Luís Ribeiro e ; OLALLA, Cláudio ; GROSSMAN, Nuno F., eds. – “11th Congress of the International Society for Rock Mechanics : proceedings..., Lisboa, Portugal, 2007.” [S.l.] : ISRM, 2007. Vol. 1. p. 909-912.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Internacional Society of Rock Mechanics (ISRM)
publisher.none.fl_str_mv Internacional Society of Rock Mechanics (ISRM)
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595955054641152