Predicting bootcamp success
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/170078 |
Resumo: | Santos, R., Pesovski, I., Henriques, R., & Trajkovik, V. (2024). Predicting bootcamp success: using regression to leverage preparatory course data for tech career transitions. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 6181-6190). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1465 |
| id |
RCAP_d38387b3b4bbf4c1b139d4b32a840bf7 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/170078 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Predicting bootcamp successusing regression to leverage preparatory course data for tech career transitionsBootcampsTech EducationPredictive ModelingPreparatory CoursesCareer TransitionSDG 4 - Quality EducationSantos, R., Pesovski, I., Henriques, R., & Trajkovik, V. (2024). Predicting bootcamp success: using regression to leverage preparatory course data for tech career transitions. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 6181-6190). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1465In our ever-evolving digital landscape, the demand for tech-savvy professionals is soaring. However, traditional education often falls short in equipping individuals with the practical skills needed by employers. Aspiring tech enthusiasts face a dilemma: they want to gain swift entry into the industry without committing to lengthy degree programs. Meanwhile, career changers seek streamlined paths to acquire relevant skills. Programming bootcamps provide a pragmatic solution. These intensive, short-term programs prioritize hands-on learning over theoretical depth. Participants emerge with coding abilities, web application development skills, and collaborative prowess — all within months. Bootcamps attract both young learners exploring alternatives to Bachelor's degrees and professionals switching careers to tech jobs. By bridging the education-employment gap, bootcamps empower individuals for junior roles in the tech sector. However, bootcamps also pose challenges. Many participants lack formal programming training, which can impact their bootcamp success. Institutions offering these programs are incentivized to create preparatory courses, ensuring fundamental skills and providing support mechanisms. In this study, we analyze the efforts of future boot campers in preparatory courses at a European university, using leave-one-out cross-validation on a dataset of 207 bootcampers to create a predictive regression model that uses information provided upon registration and their respective attendance at the preparatory courses. Then, we used this model to predict the final score of a new cohort of 58 students and measure the model's performance by measuring the mean, squared, and root mean squared errors on the test set. In the second step, we analyzed the importance of the variables used by the predictive model by measuring the R2 score and the relative tree-based feature importance for each variable. Our results show that data collected before the start of a bootcamp can be used to predict the success of a bootcamper as our Random Forest model predicted each participant's final grade with a mean absolute error of 17.67 points (grades vary between and 100). Moreover, our model explains 46% of the final grades' variability, with prior knowledge of the topic, level of instruction and the number of completed preparatory steps among the most relevant features. Implications for both research and practice are analyzed and discussed.IATED AcademyNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNSantos, RicardoPesovski, IvicaHenriques, RobertoTrajkovik, Vladimir2024-07-26T22:25:02Z2024-072024-07-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion10application/pdfhttp://hdl.handle.net/10362/170078eng978-84-09-62938-12340-1117PURE: 95959337https://doi.org/10.21125/edulearn.2024.1465info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-08-05T01:35:49Zoai:run.unl.pt:10362/170078Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:47:00.077154Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Predicting bootcamp success using regression to leverage preparatory course data for tech career transitions |
| title |
Predicting bootcamp success |
| spellingShingle |
Predicting bootcamp success Santos, Ricardo Bootcamps Tech Education Predictive Modeling Preparatory Courses Career Transition SDG 4 - Quality Education |
| title_short |
Predicting bootcamp success |
| title_full |
Predicting bootcamp success |
| title_fullStr |
Predicting bootcamp success |
| title_full_unstemmed |
Predicting bootcamp success |
| title_sort |
Predicting bootcamp success |
| author |
Santos, Ricardo |
| author_facet |
Santos, Ricardo Pesovski, Ivica Henriques, Roberto Trajkovik, Vladimir |
| author_role |
author |
| author2 |
Pesovski, Ivica Henriques, Roberto Trajkovik, Vladimir |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Santos, Ricardo Pesovski, Ivica Henriques, Roberto Trajkovik, Vladimir |
| dc.subject.por.fl_str_mv |
Bootcamps Tech Education Predictive Modeling Preparatory Courses Career Transition SDG 4 - Quality Education |
| topic |
Bootcamps Tech Education Predictive Modeling Preparatory Courses Career Transition SDG 4 - Quality Education |
| description |
Santos, R., Pesovski, I., Henriques, R., & Trajkovik, V. (2024). Predicting bootcamp success: using regression to leverage preparatory course data for tech career transitions. In L. G. Chova, C. G. Martínez, & J. Lees (Eds.), 16th International Conference on Education and New Learning Technologies 1-3 July, 2024 Palma, Spain (pp. 6181-6190). (EDULEARN24 Proceedings; No. 2024). IATED Academy. https://doi.org/10.21125/edulearn.2024.1465 |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-26T22:25:02Z 2024-07 2024-07-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/170078 |
| url |
http://hdl.handle.net/10362/170078 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-84-09-62938-1 2340-1117 PURE: 95959337 https://doi.org/10.21125/edulearn.2024.1465 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
10 application/pdf |
| dc.publisher.none.fl_str_mv |
IATED Academy |
| publisher.none.fl_str_mv |
IATED Academy |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597661347840000 |