Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane

Detalhes bibliográficos
Autor(a) principal: Lakshtanov, Evgeny
Data de Publicação: 2017
Outros Autores: Vainberg, Boris, Tejero, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/18418
Resumo: We consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981
id RCAP_d162792565a4815101e33e32dd9f90a7
oai_identifier_str oai:ria.ua.pt:10773/18418
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the PlaneBukhgeim's scattering problemInverse Dirac problemComplex conductivityInverse conductivity problemWe consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981Society for Industrial and Applied Mathematics2017-10-02T11:04:59Z2017-09-26T00:00:00Z2017-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18418eng0036-141010.1137/17M1120981Lakshtanov, EvgenyVainberg, BorisTejero, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:02:59Zoai:ria.ua.pt:10773/18418Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:55:50.026170Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
title Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
spellingShingle Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
Lakshtanov, Evgeny
Bukhgeim's scattering problem
Inverse Dirac problem
Complex conductivity
Inverse conductivity problem
title_short Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
title_full Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
title_fullStr Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
title_full_unstemmed Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
title_sort Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
author Lakshtanov, Evgeny
author_facet Lakshtanov, Evgeny
Vainberg, Boris
Tejero, Jorge
author_role author
author2 Vainberg, Boris
Tejero, Jorge
author2_role author
author
dc.contributor.author.fl_str_mv Lakshtanov, Evgeny
Vainberg, Boris
Tejero, Jorge
dc.subject.por.fl_str_mv Bukhgeim's scattering problem
Inverse Dirac problem
Complex conductivity
Inverse conductivity problem
topic Bukhgeim's scattering problem
Inverse Dirac problem
Complex conductivity
Inverse conductivity problem
description We consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981
publishDate 2017
dc.date.none.fl_str_mv 2017-10-02T11:04:59Z
2017-09-26T00:00:00Z
2017-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18418
url http://hdl.handle.net/10773/18418
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0036-1410
10.1137/17M1120981
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594189917454336