Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/18418 |
Resumo: | We consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981 |
| id |
RCAP_d162792565a4815101e33e32dd9f90a7 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/18418 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the PlaneBukhgeim's scattering problemInverse Dirac problemComplex conductivityInverse conductivity problemWe consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981Society for Industrial and Applied Mathematics2017-10-02T11:04:59Z2017-09-26T00:00:00Z2017-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18418eng0036-141010.1137/17M1120981Lakshtanov, EvgenyVainberg, BorisTejero, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:02:59Zoai:ria.ua.pt:10773/18418Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:55:50.026170Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| title |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| spellingShingle |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane Lakshtanov, Evgeny Bukhgeim's scattering problem Inverse Dirac problem Complex conductivity Inverse conductivity problem |
| title_short |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| title_full |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| title_fullStr |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| title_full_unstemmed |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| title_sort |
Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane |
| author |
Lakshtanov, Evgeny |
| author_facet |
Lakshtanov, Evgeny Vainberg, Boris Tejero, Jorge |
| author_role |
author |
| author2 |
Vainberg, Boris Tejero, Jorge |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Lakshtanov, Evgeny Vainberg, Boris Tejero, Jorge |
| dc.subject.por.fl_str_mv |
Bukhgeim's scattering problem Inverse Dirac problem Complex conductivity Inverse conductivity problem |
| topic |
Bukhgeim's scattering problem Inverse Dirac problem Complex conductivity Inverse conductivity problem |
| description |
We consider the inverse impedance tomography problem in the plane. Using Bukhgeim's scattering data for the Dirac problem, we prove that the conductivity is uniquely determined by the Dirichlet-to-Neuman map. Read More: http://epubs.siam.org/doi/abs/10.1137/17M1120981 |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-10-02T11:04:59Z 2017-09-26T00:00:00Z 2017-09-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18418 |
| url |
http://hdl.handle.net/10773/18418 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0036-1410 10.1137/17M1120981 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594189917454336 |