De’coding concepts: Automatic characterization of populist moments on Twitter

Bibliographic Details
Main Author: Mateus, Vasco Lopo Hipólito Branco Ribeiro
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/30527
Summary: In 1995, McChesney stated that the political economy of communication studies was at a breaking point. In the following two decades, new communication platforms and the heightened commercialization of media systems brought political discourse to the forefront of political debates and public interests. Portugal, which was once seen as resilient against the populist movements throughout the 2010s, has exhibited a noteworthy shift towards embracing these trends in recent election cycles. Simultaneously, the country appears to be aligning with foreign trends in its adoption of social media for political strategies. This parallel “catching-up” echoes a broader phenomenon that is also prevalent in social sciences' inertia to adopt contemporary methodologies and more advanced data techniques, despite the ever-expanding realm of information available. In our research, we developed a machine-learning model with the objective of using deep learning techniques for binary classification to create a robust method capable of discerning complex concepts, like populism and treating them as variables. The model’s accurate performance on classifying tweets from Portuguese political actors, over the last two election cycles, allowed us to establish some primary features of populist moments through a complementary fundamental analysis. The model employed not only serves as a strong foundation for future research within populism but also demonstrates notable adaptability to other possible subjects within social sciences. Through different guidelines and objectives in the labeling process, our model's versatility represents an initial stride towards streamlining this kind of research, effectively reducing the labor-intensive demands currently associated with analyzing large datasets.
id RCAP_cb33fcec758bb58ff60140197e520b83
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30527
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling De’coding concepts: Automatic characterization of populist moments on TwitterPopulismo -- PopulismText-as-dataHype machinePortuguese political actorsProcessamento de linguagem natural - -- NLP Natural language processingBERTTexto-como-variáveisMáquina dos mediaPolíticos PortuguesesIn 1995, McChesney stated that the political economy of communication studies was at a breaking point. In the following two decades, new communication platforms and the heightened commercialization of media systems brought political discourse to the forefront of political debates and public interests. Portugal, which was once seen as resilient against the populist movements throughout the 2010s, has exhibited a noteworthy shift towards embracing these trends in recent election cycles. Simultaneously, the country appears to be aligning with foreign trends in its adoption of social media for political strategies. This parallel “catching-up” echoes a broader phenomenon that is also prevalent in social sciences' inertia to adopt contemporary methodologies and more advanced data techniques, despite the ever-expanding realm of information available. In our research, we developed a machine-learning model with the objective of using deep learning techniques for binary classification to create a robust method capable of discerning complex concepts, like populism and treating them as variables. The model’s accurate performance on classifying tweets from Portuguese political actors, over the last two election cycles, allowed us to establish some primary features of populist moments through a complementary fundamental analysis. The model employed not only serves as a strong foundation for future research within populism but also demonstrates notable adaptability to other possible subjects within social sciences. Through different guidelines and objectives in the labeling process, our model's versatility represents an initial stride towards streamlining this kind of research, effectively reducing the labor-intensive demands currently associated with analyzing large datasets.Em 1995, McChesney afirmou que a economia política da comunicação estava num ponto de ruptura. Nas décadas seguintes, novos meios de comunicação e uma intensificação da comercialização dos sistemas mediáticos lançaram a disciplina para o centro dos debates políticos e do interesse público. Portugal, outrora visto como resiliente aos movimentos populistas da década de 2010, tem rapidamente transitado em direção da sua adoção nas mais recentes eleições. Paralelamente, o país tem aproximando-se às tendências internacionais na sua recente adoção das redes sociais para estratégias políticas. Esta "recuperação" espelha também um fenômeno mais amplo presente nas suas ciências sociais, que resistem à adoção de metodologias contemporâneas e técnicas de processamento de informação mais avançadas, apesar do crescente universo de dados disponível. Desenvolvendo um modelo de aprendizagem automática através de técnicas de “deep learning” para classificação binária, cria-mos um método capaz de caracterizar conceitos complexos, como populismo, de forma a tratá-los como variáveis. O bom desempenho do modelo na classificação de tweets de vários atores políticos portugueses, ao longo dos dois últimos ciclos eleitorais, permitiu-nos, através de uma análise complementar, identificar algumas características primárias dos momentos populistas. Este modelo serve, não só, como uma base para futuros estudos sobre populismo, como também demonstra uma forte adaptabilidade a outros conceitos dentro das ciências sociais. Com pequenas alterações nas diretrizes e objetivos do processo de rotulagem, o nosso modelo é um primeiro passo para se uniformizar este tipo de pesquisa, reduzindo as necessidades de mão-de-obra atualmente associadas às análises de grandes conjuntos de dados.2024-01-23T10:14:14Z2023-12-11T00:00:00Z2023-12-112023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30527TID:203440463engMateus, Vasco Lopo Hipólito Branco Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:41:44Zoai:repositorio.iscte-iul.pt:10071/30527Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:30:34.855383Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv De’coding concepts: Automatic characterization of populist moments on Twitter
title De’coding concepts: Automatic characterization of populist moments on Twitter
spellingShingle De’coding concepts: Automatic characterization of populist moments on Twitter
Mateus, Vasco Lopo Hipólito Branco Ribeiro
Populismo -- Populism
Text-as-data
Hype machine
Portuguese political actors
Processamento de linguagem natural - -- NLP Natural language processing
BERT
Texto-como-variáveis
Máquina dos media
Políticos Portugueses
title_short De’coding concepts: Automatic characterization of populist moments on Twitter
title_full De’coding concepts: Automatic characterization of populist moments on Twitter
title_fullStr De’coding concepts: Automatic characterization of populist moments on Twitter
title_full_unstemmed De’coding concepts: Automatic characterization of populist moments on Twitter
title_sort De’coding concepts: Automatic characterization of populist moments on Twitter
author Mateus, Vasco Lopo Hipólito Branco Ribeiro
author_facet Mateus, Vasco Lopo Hipólito Branco Ribeiro
author_role author
dc.contributor.author.fl_str_mv Mateus, Vasco Lopo Hipólito Branco Ribeiro
dc.subject.por.fl_str_mv Populismo -- Populism
Text-as-data
Hype machine
Portuguese political actors
Processamento de linguagem natural - -- NLP Natural language processing
BERT
Texto-como-variáveis
Máquina dos media
Políticos Portugueses
topic Populismo -- Populism
Text-as-data
Hype machine
Portuguese political actors
Processamento de linguagem natural - -- NLP Natural language processing
BERT
Texto-como-variáveis
Máquina dos media
Políticos Portugueses
description In 1995, McChesney stated that the political economy of communication studies was at a breaking point. In the following two decades, new communication platforms and the heightened commercialization of media systems brought political discourse to the forefront of political debates and public interests. Portugal, which was once seen as resilient against the populist movements throughout the 2010s, has exhibited a noteworthy shift towards embracing these trends in recent election cycles. Simultaneously, the country appears to be aligning with foreign trends in its adoption of social media for political strategies. This parallel “catching-up” echoes a broader phenomenon that is also prevalent in social sciences' inertia to adopt contemporary methodologies and more advanced data techniques, despite the ever-expanding realm of information available. In our research, we developed a machine-learning model with the objective of using deep learning techniques for binary classification to create a robust method capable of discerning complex concepts, like populism and treating them as variables. The model’s accurate performance on classifying tweets from Portuguese political actors, over the last two election cycles, allowed us to establish some primary features of populist moments through a complementary fundamental analysis. The model employed not only serves as a strong foundation for future research within populism but also demonstrates notable adaptability to other possible subjects within social sciences. Through different guidelines and objectives in the labeling process, our model's versatility represents an initial stride towards streamlining this kind of research, effectively reducing the labor-intensive demands currently associated with analyzing large datasets.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-11T00:00:00Z
2023-12-11
2023-09
2024-01-23T10:14:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30527
TID:203440463
url http://hdl.handle.net/10071/30527
identifier_str_mv TID:203440463
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597467349745664