Safety Assessment of Ultra Thin Precast Concrete Shells

Bibliographic Details
Main Author: Vanzeller, Joana Boléo
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/178094
Summary: The aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells.
id RCAP_caa5884a77056afdf49b3a11af6aed0f
oai_identifier_str oai:run.unl.pt:10362/178094
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Safety Assessment of Ultra Thin Precast Concrete ShellsStructural ReliabilityUltra Thin Concrete ShellsStructural SafetyFailure ProbabilityNeural NetworkDomínio/Área Científica::Engenharia e Tecnologia::Engenharia CivilThe aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells.A presente dissertação tem como objetivo analisar a segurança e fiabilidade de cascas ultrafinas de betão reforçado com fibras, com ênfase na avaliação de diversas espessuras, resistências à tração do betão e ângulos de incidência do vento. A metodologia proposta baseia-se na aplicação de métodos probabilísticos devido à limitação de dados específicos para a utilização dos coeficientes parciais de segurança. Uma rede neural foi desenvolvida para processar diversas variáveis de entrada, como a espessura da casca, os ângulos de incidência do vento, as cargas regulamentares do peso próprio, a carga de neve e vento, e a resistência à tração do betão. Para o desenvolvimento da rede neural, recorreu-se ao Visual Studio Code (VSC) como ambiente de desenvolvimento integrado e à linguagem de programação Python. Os resultados obtidos indicam que as cascas analisadas demonstram um nível satisfatório de segurança e fiabilidade para espessuras superiores a 200 mm, especialmente quando se utiliza betão de alta resistência e alto desempenho. Além disso, apresentam um comportamento mais seguro com um ângulo de incidência de vento de 60°, o qual depende significativamente da resistência à tração do betão. Este estudo contribui significativamente para o entendimento da fiabilidade estrutural das cascas de betão ultrafinas, destacando a importância das abordagens probabilísticas na análise de segurança, especialmente para estruturas singulares como as cascas.Cavaco, EduardoRUNVanzeller, Joana Boléo2025-01-29T16:18:38Z2024-052024-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/178094enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-03T01:37:44Zoai:run.unl.pt:10362/178094Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:45:50.977120Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Safety Assessment of Ultra Thin Precast Concrete Shells
title Safety Assessment of Ultra Thin Precast Concrete Shells
spellingShingle Safety Assessment of Ultra Thin Precast Concrete Shells
Vanzeller, Joana Boléo
Structural Reliability
Ultra Thin Concrete Shells
Structural Safety
Failure Probability
Neural Network
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil
title_short Safety Assessment of Ultra Thin Precast Concrete Shells
title_full Safety Assessment of Ultra Thin Precast Concrete Shells
title_fullStr Safety Assessment of Ultra Thin Precast Concrete Shells
title_full_unstemmed Safety Assessment of Ultra Thin Precast Concrete Shells
title_sort Safety Assessment of Ultra Thin Precast Concrete Shells
author Vanzeller, Joana Boléo
author_facet Vanzeller, Joana Boléo
author_role author
dc.contributor.none.fl_str_mv Cavaco, Eduardo
RUN
dc.contributor.author.fl_str_mv Vanzeller, Joana Boléo
dc.subject.por.fl_str_mv Structural Reliability
Ultra Thin Concrete Shells
Structural Safety
Failure Probability
Neural Network
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil
topic Structural Reliability
Ultra Thin Concrete Shells
Structural Safety
Failure Probability
Neural Network
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil
description The aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
2024-05-01T00:00:00Z
2025-01-29T16:18:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/178094
url http://hdl.handle.net/10362/178094
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598312573304832