Safety Assessment of Ultra Thin Precast Concrete Shells
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/178094 |
Resumo: | The aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells. |
| id |
RCAP_caa5884a77056afdf49b3a11af6aed0f |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/178094 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Safety Assessment of Ultra Thin Precast Concrete ShellsStructural ReliabilityUltra Thin Concrete ShellsStructural SafetyFailure ProbabilityNeural NetworkDomínio/Área Científica::Engenharia e Tecnologia::Engenharia CivilThe aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells.A presente dissertação tem como objetivo analisar a segurança e fiabilidade de cascas ultrafinas de betão reforçado com fibras, com ênfase na avaliação de diversas espessuras, resistências à tração do betão e ângulos de incidência do vento. A metodologia proposta baseia-se na aplicação de métodos probabilísticos devido à limitação de dados específicos para a utilização dos coeficientes parciais de segurança. Uma rede neural foi desenvolvida para processar diversas variáveis de entrada, como a espessura da casca, os ângulos de incidência do vento, as cargas regulamentares do peso próprio, a carga de neve e vento, e a resistência à tração do betão. Para o desenvolvimento da rede neural, recorreu-se ao Visual Studio Code (VSC) como ambiente de desenvolvimento integrado e à linguagem de programação Python. Os resultados obtidos indicam que as cascas analisadas demonstram um nível satisfatório de segurança e fiabilidade para espessuras superiores a 200 mm, especialmente quando se utiliza betão de alta resistência e alto desempenho. Além disso, apresentam um comportamento mais seguro com um ângulo de incidência de vento de 60°, o qual depende significativamente da resistência à tração do betão. Este estudo contribui significativamente para o entendimento da fiabilidade estrutural das cascas de betão ultrafinas, destacando a importância das abordagens probabilísticas na análise de segurança, especialmente para estruturas singulares como as cascas.Cavaco, EduardoRUNVanzeller, Joana Boléo2025-01-29T16:18:38Z2024-052024-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/178094enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-03T01:37:44Zoai:run.unl.pt:10362/178094Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:45:50.977120Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| title |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| spellingShingle |
Safety Assessment of Ultra Thin Precast Concrete Shells Vanzeller, Joana Boléo Structural Reliability Ultra Thin Concrete Shells Structural Safety Failure Probability Neural Network Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
| title_short |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| title_full |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| title_fullStr |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| title_full_unstemmed |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| title_sort |
Safety Assessment of Ultra Thin Precast Concrete Shells |
| author |
Vanzeller, Joana Boléo |
| author_facet |
Vanzeller, Joana Boléo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cavaco, Eduardo RUN |
| dc.contributor.author.fl_str_mv |
Vanzeller, Joana Boléo |
| dc.subject.por.fl_str_mv |
Structural Reliability Ultra Thin Concrete Shells Structural Safety Failure Probability Neural Network Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
| topic |
Structural Reliability Ultra Thin Concrete Shells Structural Safety Failure Probability Neural Network Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
| description |
The aim of this dissertation is to analyze the safety and reliability of ultra-thin concrete shells reinforced with fibers, focusing on assessing various thicknesses, tensile strengths of concrete, and angles of wind incidence. The proposed approach involves the use of probabilistic methods due to the scarcity of specific data for the application of partial safety coefficient methods. A neural network was developed to predict the failure probability of a structure and was trained to handle multiple input variables, including shell thick- ness, concrete strength, and wind incidence angles. Visual Studio Code (VSC) was utilized as the integrated development environment, along with the Py- thon programming language, to develop the neural network. The results indicate that the analyzed shells demonstrate a satisfactory level of safety and reliability for thicknesses exceeding 200 mm, particularly when high-strength and high-performance concrete is used. Moreover, they exhibit safer behavior at a wind incidence angle of 60°, which significantly depends on the tensile strength of the concrete. This study significantly contributes to the understanding of the structural reliability of ultra-thin concrete shells, emphasizing the importance of probabilistic approaches in safety analysis, particularly for unique structures such as shells. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05 2024-05-01T00:00:00Z 2025-01-29T16:18:38Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/178094 |
| url |
http://hdl.handle.net/10362/178094 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598312573304832 |