Object detection and recognition for robotic applications

Detalhes bibliográficos
Autor(a) principal: Aleixo, Patrícia Nunes
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/13811
Resumo: The computer vision assumes an important relevance in the development of robotic applications. In several applications, robots need to use vision to detect objects, a challenging and sometimes difficult task. This thesis is focused on the study and development of algorithms to be used in detection and identification of objects on digital images to be applied on robots that will be used in practice cases. Three problems are addressed: Detection and identification of decorative stones for textile industry; Detection of the ball in robotic soccer; Detection of objects in a service robot, that operates in a domestic environment. In each case, different methods are studied and applied, such as, Template Matching, Hough transform and visual descriptors (like SIFT and SURF). It was chosen the OpenCv library in order to use the data structures to image manipulation, as well as other structures for all information generated by the developed vision systems. Whenever possible, it was used the implementation of the described methods and have been developed new approaches, both in terms of pre-processing algorithms and in terms of modification of the source code in some used functions. Regarding the pre-processing algorithms, were used the Canny edge detector, contours detection, extraction of color information, among others. For the three problems, there are presented and discussed experimental results in order to evaluate the best method to apply in each case. The best method for each application is already integrated or in the process of integration in the described robots.
id RCAP_c5997f86bba358dfad23cde5c2e98321
oai_identifier_str oai:ria.ua.pt:10773/13811
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Object detection and recognition for robotic applicationsEngenharia de computadoresVisão por computadorRobots autónomosLocalização automáticaThe computer vision assumes an important relevance in the development of robotic applications. In several applications, robots need to use vision to detect objects, a challenging and sometimes difficult task. This thesis is focused on the study and development of algorithms to be used in detection and identification of objects on digital images to be applied on robots that will be used in practice cases. Three problems are addressed: Detection and identification of decorative stones for textile industry; Detection of the ball in robotic soccer; Detection of objects in a service robot, that operates in a domestic environment. In each case, different methods are studied and applied, such as, Template Matching, Hough transform and visual descriptors (like SIFT and SURF). It was chosen the OpenCv library in order to use the data structures to image manipulation, as well as other structures for all information generated by the developed vision systems. Whenever possible, it was used the implementation of the described methods and have been developed new approaches, both in terms of pre-processing algorithms and in terms of modification of the source code in some used functions. Regarding the pre-processing algorithms, were used the Canny edge detector, contours detection, extraction of color information, among others. For the three problems, there are presented and discussed experimental results in order to evaluate the best method to apply in each case. The best method for each application is already integrated or in the process of integration in the described robots.A visão por computador assume uma importante relevância no desenvolvimento de aplicações robóticas, na medida em que há robôs que precisam de usar a visão para detetar objetos, uma tarefa desafiadora e por vezes difícil. Esta dissertação foca-se no estudo e desenvolvimento de algoritmos para a deteção e identificação de objetos em imagem digital para aplicar em robôs que serão usados em casos práticos. São abordados três problemas: Deteção e identificação de pedras decorativas para a indústria têxtil; Deteção da bola em futebol robótico; Deteção de objetos num robô de serviço, que opera em ambiente doméstico. Para cada caso, diferentes métodos são estudados e aplicados, tais como, Template Matching, transformada de Hough e descritores visuais (como SIFT e SURF). Optou-se pela biblioteca OpenCv com vista a utilizar as suas estruturas de dados para manipulação de imagem, bem como as demais estruturas para toda a informação gerada pelos sistemas de visão desenvolvidos. Sempre que possivel utilizaram-se as implementações dos métodos descritos tendo sido desenvolvidas novas abordagens, quer em termos de algoritmos de preprocessamento quer em termos de alteração do código fonte das funções utilizadas. Como algoritmos de pre-processamento foram utilizados o detetor de arestas Canny, deteção de contornos, extração de informação de cor, entre outros. Para os três problemas, são apresentados e discutidos resultados experimentais, de forma a avaliar o melhor método a aplicar em cada caso. O melhor método em cada aplicação encontra-se já integrado ou em fase de integração dos robôs descritos.Universidade de Aveiro2015-04-16T10:23:23Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/13811TID:201588706engAleixo, Patrícia Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:53:24Zoai:ria.ua.pt:10773/13811Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:49:57.424941Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Object detection and recognition for robotic applications
title Object detection and recognition for robotic applications
spellingShingle Object detection and recognition for robotic applications
Aleixo, Patrícia Nunes
Engenharia de computadores
Visão por computador
Robots autónomos
Localização automática
title_short Object detection and recognition for robotic applications
title_full Object detection and recognition for robotic applications
title_fullStr Object detection and recognition for robotic applications
title_full_unstemmed Object detection and recognition for robotic applications
title_sort Object detection and recognition for robotic applications
author Aleixo, Patrícia Nunes
author_facet Aleixo, Patrícia Nunes
author_role author
dc.contributor.author.fl_str_mv Aleixo, Patrícia Nunes
dc.subject.por.fl_str_mv Engenharia de computadores
Visão por computador
Robots autónomos
Localização automática
topic Engenharia de computadores
Visão por computador
Robots autónomos
Localização automática
description The computer vision assumes an important relevance in the development of robotic applications. In several applications, robots need to use vision to detect objects, a challenging and sometimes difficult task. This thesis is focused on the study and development of algorithms to be used in detection and identification of objects on digital images to be applied on robots that will be used in practice cases. Three problems are addressed: Detection and identification of decorative stones for textile industry; Detection of the ball in robotic soccer; Detection of objects in a service robot, that operates in a domestic environment. In each case, different methods are studied and applied, such as, Template Matching, Hough transform and visual descriptors (like SIFT and SURF). It was chosen the OpenCv library in order to use the data structures to image manipulation, as well as other structures for all information generated by the developed vision systems. Whenever possible, it was used the implementation of the described methods and have been developed new approaches, both in terms of pre-processing algorithms and in terms of modification of the source code in some used functions. Regarding the pre-processing algorithms, were used the Canny edge detector, contours detection, extraction of color information, among others. For the three problems, there are presented and discussed experimental results in order to evaluate the best method to apply in each case. The best method for each application is already integrated or in the process of integration in the described robots.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2015-04-16T10:23:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/13811
TID:201588706
url http://hdl.handle.net/10773/13811
identifier_str_mv TID:201588706
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594108669591552