The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts

Detalhes bibliográficos
Autor(a) principal: García, Juan
Data de Publicação: 2005
Outros Autores: Gomes, Helder, Serp, Philippe, Kalck, Philippe, Figueiredo, José, Faria, Joaquim
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/1692
Resumo: High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of Ru and high external surface of the catalysts, promoting an efficient contact between the substrate and the catalyst. The results obtained with model solutions of aniline, as well as real case effluents, led to treated water of excellent quality, which can be returned to the environment without any further treatment. In this way CWAO can be used as sole treatment process, avoiding the necessity of extra costly post-treatments.
id RCAP_c56c62e78eacf59585c879f0204ef9e4
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/1692
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalystsHigh strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of Ru and high external surface of the catalysts, promoting an efficient contact between the substrate and the catalyst. The results obtained with model solutions of aniline, as well as real case effluents, led to treated water of excellent quality, which can be returned to the environment without any further treatment. In this way CWAO can be used as sole treatment process, avoiding the necessity of extra costly post-treatments.International Nuclear Information SystemsBiblioteca Digital do IPBGarcía, JuanGomes, HelderSerp, PhilippeKalck, PhilippeFigueiredo, JoséFaria, Joaquim2010-02-03T17:12:53Z20052005-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/1692engGarcía, Juan; Gomes, Helder; Serp, Philippe; Kalck, Philippe; Figueiredo, José; Faria, Joaquim (2005). The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts. In CESEP'05. 1st International Conference on Carbon for Energy Storage and Environment Protection. Órleans, Franceinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:16Zoai:bibliotecadigital.ipb.pt:10198/1692Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:16:48.963653Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
title The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
spellingShingle The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
García, Juan
title_short The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
title_full The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
title_fullStr The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
title_full_unstemmed The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
title_sort The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts
author García, Juan
author_facet García, Juan
Gomes, Helder
Serp, Philippe
Kalck, Philippe
Figueiredo, José
Faria, Joaquim
author_role author
author2 Gomes, Helder
Serp, Philippe
Kalck, Philippe
Figueiredo, José
Faria, Joaquim
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv García, Juan
Gomes, Helder
Serp, Philippe
Kalck, Philippe
Figueiredo, José
Faria, Joaquim
description High strength wastewaters containing aromatic compounds are normally not efficiently treated by conventional methods, including the common biological treatment. In these cases a more sophisticated approach is necessary to attain the desired levels of purification. Catalytic wet air oxidation (CWAO) using carbon based catalysts is employed worldwide as effective pre-treatment of effluents with these characteristics. Carbon materials are preferred as active catalysts or support for preparing them due to their morphological and structural characteristics. In the last 10 years, due to a tremendous development in materials production and processing, carbon nano-structures are becoming more accessible and common widening their range of applications [1]. In this context, the scope of the present work is to illustrate a potential use of multi-walled carbon nano-tubes (MWNT) supported ruthenium catalysts for catalytic wet air oxidation of aniline polluted wastewaters. The metal was supported by incipient wetness and excess impregnation, starting from liquid solutions of three different Ru precursors. Impregnation was carried out on modified MWNT, namely on MWNT-COOH (HNO{sub 3} modified) and MWNT-COONa (HNO{sub 3}/Na{sub 2}CO{sub 3} modified). For the 1% weight Ru/MWNT catalysts, the order of activities decreased in the sequence Ru(COD)(COT){>=}RuCl{sub 3}{>=}Ru(C{sub 5}H{sub 5}){sub 2}. The conversion of aniline after 45 min of reaction was 100% for the catalyst prepared with Ru(COD)(COT). The influence of the Ru precursor, preparation method and the support surface modification was studied comparing the conversion of aniline obtained for the different prepared Ru/MWNT catalysts (Figure 1). MWNT as support material, provide a significant metal dispersion with very small Ru nanoparticles (Figure 2) being observed. This will induce an efficient surface contact between the aniline molecule and the active sites [2]. The excellent catalytic performances of Ru/MWNT are explained in terms of the high dispersion of Ru and high external surface of the catalysts, promoting an efficient contact between the substrate and the catalyst. The results obtained with model solutions of aniline, as well as real case effluents, led to treated water of excellent quality, which can be returned to the environment without any further treatment. In this way CWAO can be used as sole treatment process, avoiding the necessity of extra costly post-treatments.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
2010-02-03T17:12:53Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/1692
url http://hdl.handle.net/10198/1692
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv García, Juan; Gomes, Helder; Serp, Philippe; Kalck, Philippe; Figueiredo, José; Faria, Joaquim (2005). The challenges of treating high strength wastewaters: CWAO using MWNT supported ruthenium catalysts. In CESEP'05. 1st International Conference on Carbon for Energy Storage and Environment Protection. Órleans, France
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Nuclear Information Systems
publisher.none.fl_str_mv International Nuclear Information Systems
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591755496226816