Effect of Varying Prior Information in Axillary 2D Microwave Tomography

Bibliographic Details
Main Author: Savazzi, Matteo
Publication Date: 2022
Other Authors: Karadima, Olympia, Felicio, Joao M., Fernandes, Carlos A., Kosmas, Panagiotis, Conceicao, Raquel C.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/53367
Summary: We numerically assess the potential of microwave tomography (MWT) for the detection and dielectric properties estimation of axillary lymph nodes (ALNs), and we study the robustness of our system using prior information with varying levels of accuracy. We adopt a 2-dimensional MWT system with 8 antennas (0.5-2.5 GHz) placed around the axillary region. The reconstruction algorithm implements the distorted Born iterative method. We show that: (i) when accurate prior knowledge of the axillary tissues (fat and muscle) is available, our system successfully detects an ALN; (ii) ±30% error in the prior estimation of fat and muscle dielectric properties does not affect image quality; (iii) ±7mm error in muscle position causes slight artifacts, while ± 14mm error in muscle position affects ALN detection. To the best of our knowledge, this is the first paper in the literature to study the impact of prior information accuracy on detecting an ALN using MWT.
id RCAP_c1fbb20b9f29cdb3415003cbac4e93b5
oai_identifier_str oai:repositorio.ulisboa.pt:10451/53367
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Effect of Varying Prior Information in Axillary 2D Microwave Tomographyaxillary lymph node imagingbreast cancerdistorted Born iterative method (DBIM)microwave tomographyprior informationWe numerically assess the potential of microwave tomography (MWT) for the detection and dielectric properties estimation of axillary lymph nodes (ALNs), and we study the robustness of our system using prior information with varying levels of accuracy. We adopt a 2-dimensional MWT system with 8 antennas (0.5-2.5 GHz) placed around the axillary region. The reconstruction algorithm implements the distorted Born iterative method. We show that: (i) when accurate prior knowledge of the axillary tissues (fat and muscle) is available, our system successfully detects an ALN; (ii) ±30% error in the prior estimation of fat and muscle dielectric properties does not affect image quality; (iii) ±7mm error in muscle position causes slight artifacts, while ± 14mm error in muscle position affects ALN detection. To the best of our knowledge, this is the first paper in the literature to study the impact of prior information accuracy on detecting an ALN using MWT.Repositório da Universidade de LisboaSavazzi, MatteoKaradima, OlympiaFelicio, Joao M.Fernandes, Carlos A.Kosmas, PanagiotisConceicao, Raquel C.2022-06-10T15:45:50Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/53367eng978-88-31299-04-610.23919/EuCAP53622.2022.9769372info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:46:40Zoai:repositorio.ulisboa.pt:10451/53367Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:24:18.251190Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Effect of Varying Prior Information in Axillary 2D Microwave Tomography
title Effect of Varying Prior Information in Axillary 2D Microwave Tomography
spellingShingle Effect of Varying Prior Information in Axillary 2D Microwave Tomography
Savazzi, Matteo
axillary lymph node imaging
breast cancer
distorted Born iterative method (DBIM)
microwave tomography
prior information
title_short Effect of Varying Prior Information in Axillary 2D Microwave Tomography
title_full Effect of Varying Prior Information in Axillary 2D Microwave Tomography
title_fullStr Effect of Varying Prior Information in Axillary 2D Microwave Tomography
title_full_unstemmed Effect of Varying Prior Information in Axillary 2D Microwave Tomography
title_sort Effect of Varying Prior Information in Axillary 2D Microwave Tomography
author Savazzi, Matteo
author_facet Savazzi, Matteo
Karadima, Olympia
Felicio, Joao M.
Fernandes, Carlos A.
Kosmas, Panagiotis
Conceicao, Raquel C.
author_role author
author2 Karadima, Olympia
Felicio, Joao M.
Fernandes, Carlos A.
Kosmas, Panagiotis
Conceicao, Raquel C.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Savazzi, Matteo
Karadima, Olympia
Felicio, Joao M.
Fernandes, Carlos A.
Kosmas, Panagiotis
Conceicao, Raquel C.
dc.subject.por.fl_str_mv axillary lymph node imaging
breast cancer
distorted Born iterative method (DBIM)
microwave tomography
prior information
topic axillary lymph node imaging
breast cancer
distorted Born iterative method (DBIM)
microwave tomography
prior information
description We numerically assess the potential of microwave tomography (MWT) for the detection and dielectric properties estimation of axillary lymph nodes (ALNs), and we study the robustness of our system using prior information with varying levels of accuracy. We adopt a 2-dimensional MWT system with 8 antennas (0.5-2.5 GHz) placed around the axillary region. The reconstruction algorithm implements the distorted Born iterative method. We show that: (i) when accurate prior knowledge of the axillary tissues (fat and muscle) is available, our system successfully detects an ALN; (ii) ±30% error in the prior estimation of fat and muscle dielectric properties does not affect image quality; (iii) ±7mm error in muscle position causes slight artifacts, while ± 14mm error in muscle position affects ALN detection. To the best of our knowledge, this is the first paper in the literature to study the impact of prior information accuracy on detecting an ALN using MWT.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-10T15:45:50Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/53367
url http://hdl.handle.net/10451/53367
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-88-31299-04-6
10.23919/EuCAP53622.2022.9769372
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601688308547584