Extraction of information from log files using Python programming and Tableau

Detalhes bibliográficos
Autor(a) principal: Rigueira, F.
Data de Publicação: 2020
Outros Autores: Bernardino, J., Pedrosa, I.
Idioma: por
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/22734
Resumo: Application servers generate daily log files with a significant part of their activity. This information is recorded sequentially over time but mixes various types of information. The absence of a standard for formatting the data record and the respective volume, make it difficult to extract the corresponding information. The lack of work, specifically in the treatment of SOA server log files, did not allow the comparisson with pre-existing Key Performance Indicators (KPI) or a set of best practices that could be followed. This work results in a description of the process that can serve as a guide for: definition of a logging structure; construction of a data extraction process; definition of a data structure to support the extracted information; definition of control metrics; definition of analysis and control processes for the extracted data.. Given the size of the files and the diversity of types of information that existed, it was necessary to use Python programming for data extraction and pre-treatment, Excel for data pre-treatment, Tableau for statistical treatment and presentation of results.
id RCAP_c17c5e006135a43942c6c593a823e6e1
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22734
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Extraction of information from log files using Python programming and TableauLog filesKey Performance IndicatorsKPIsPythonTableauApplication servers generate daily log files with a significant part of their activity. This information is recorded sequentially over time but mixes various types of information. The absence of a standard for formatting the data record and the respective volume, make it difficult to extract the corresponding information. The lack of work, specifically in the treatment of SOA server log files, did not allow the comparisson with pre-existing Key Performance Indicators (KPI) or a set of best practices that could be followed. This work results in a description of the process that can serve as a guide for: definition of a logging structure; construction of a data extraction process; definition of a data structure to support the extracted information; definition of control metrics; definition of analysis and control processes for the extracted data.. Given the size of the files and the diversity of types of information that existed, it was necessary to use Python programming for data extraction and pre-treatment, Excel for data pre-treatment, Tableau for statistical treatment and presentation of results.IEEE2021-06-15T09:44:43Z2020-01-01T00:00:00Z20202021-06-15T10:43:56Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/22734por978-989-54659-0-32166-072710.23919/cisti49556.2020.9140844Rigueira, F.Bernardino, J.Pedrosa, I.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:18:24Zoai:repositorio.iscte-iul.pt:10071/22734Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:20:27.225431Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Extraction of information from log files using Python programming and Tableau
title Extraction of information from log files using Python programming and Tableau
spellingShingle Extraction of information from log files using Python programming and Tableau
Rigueira, F.
Log files
Key Performance Indicators
KPIs
Python
Tableau
title_short Extraction of information from log files using Python programming and Tableau
title_full Extraction of information from log files using Python programming and Tableau
title_fullStr Extraction of information from log files using Python programming and Tableau
title_full_unstemmed Extraction of information from log files using Python programming and Tableau
title_sort Extraction of information from log files using Python programming and Tableau
author Rigueira, F.
author_facet Rigueira, F.
Bernardino, J.
Pedrosa, I.
author_role author
author2 Bernardino, J.
Pedrosa, I.
author2_role author
author
dc.contributor.author.fl_str_mv Rigueira, F.
Bernardino, J.
Pedrosa, I.
dc.subject.por.fl_str_mv Log files
Key Performance Indicators
KPIs
Python
Tableau
topic Log files
Key Performance Indicators
KPIs
Python
Tableau
description Application servers generate daily log files with a significant part of their activity. This information is recorded sequentially over time but mixes various types of information. The absence of a standard for formatting the data record and the respective volume, make it difficult to extract the corresponding information. The lack of work, specifically in the treatment of SOA server log files, did not allow the comparisson with pre-existing Key Performance Indicators (KPI) or a set of best practices that could be followed. This work results in a description of the process that can serve as a guide for: definition of a logging structure; construction of a data extraction process; definition of a data structure to support the extracted information; definition of control metrics; definition of analysis and control processes for the extracted data.. Given the size of the files and the diversity of types of information that existed, it was necessary to use Python programming for data extraction and pre-treatment, Excel for data pre-treatment, Tableau for statistical treatment and presentation of results.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01T00:00:00Z
2020
2021-06-15T09:44:43Z
2021-06-15T10:43:56Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22734
url http://hdl.handle.net/10071/22734
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 978-989-54659-0-3
2166-0727
10.23919/cisti49556.2020.9140844
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597342290280448