Welding of High Entropy Alloys

Bibliographic Details
Main Author: Shen, Jiajia
Publication Date: 2022
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/156951
Summary: High entropy alloys are novel engineering materials which possess extraordinary properties. Current weldability studies regarding this novel class of materials are scarce. Hence, the present work addresses this shortcoming by focusing on the use of arc-based welding processes for joining of single phase equiatomic CoCrFeMnNi (Co-Cr-Fe-Mn-Ni system), a dual phase non-equiatomic eutectic AlCoCrFeNi2.1 (Al-Co-Cr-Fe-Ni system) and a metastable Fe42Mn28Co10Cr15Si5 (Fe-Mn-Co-Cr-Si system) high entropy alloys. For the single phase CoCrFeMnNi, gas metal arc welding using 308 and 410 stainless steel fillers are used. Multiscale correlative microstructure characterization encompassing electron microscopy coupled with mechanical property analysis, alongside thermodynamic calculations, is used to address the effect of the weld thermal cycle across the joint. Overall, this material possesses excellent weldability, with the joints possessing good mechanical behavior. The first successful welding of a non-equiatomic eutectic AlCoCrFeNi2.1 is obtained using gas tungsten arc welding. Again, multiscale characterization enabled to determine the role of the weld thermal cycle across the welded joint. The volume fraction of the dual-phase structure, as well as those of the strengthening nanoscale precipitates was seen to be correlated to the distance to the heat source. The as-welded material possessed a combination of good strength and ductility, showcasing the good weldability of this material. Finally, gas tungsten arc welding of a metastable Fe42Mn28Co10Cr15Si5 was also successfully performed. Electron microscopy, aided by high energy synchrotron X-ray diffraction, were combined with thermodynamic calculation to understand how the existing phases varied across the welded joint. Similarly, to the other welded joints, the metastable alloy was also seen to present good weldability, with the observed mechanical behavior of the joints enabling its use for structural applications in different industries. The results obtained in this work show that arc-based welding processes are viable for welding of these novel materials and the resulting properties enable to consider the obtained joints for structural-oriented applications.
id RCAP_c034873b886cf3c91976e5bcc53a85d2
oai_identifier_str oai:run.unl.pt:10362/156951
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Welding of High Entropy AlloysDigital image correlationGas metal arc weldingGas tungsten arc weldingHigh entropy alloysMechanical testingMicrostructure evolutionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MecânicaHigh entropy alloys are novel engineering materials which possess extraordinary properties. Current weldability studies regarding this novel class of materials are scarce. Hence, the present work addresses this shortcoming by focusing on the use of arc-based welding processes for joining of single phase equiatomic CoCrFeMnNi (Co-Cr-Fe-Mn-Ni system), a dual phase non-equiatomic eutectic AlCoCrFeNi2.1 (Al-Co-Cr-Fe-Ni system) and a metastable Fe42Mn28Co10Cr15Si5 (Fe-Mn-Co-Cr-Si system) high entropy alloys. For the single phase CoCrFeMnNi, gas metal arc welding using 308 and 410 stainless steel fillers are used. Multiscale correlative microstructure characterization encompassing electron microscopy coupled with mechanical property analysis, alongside thermodynamic calculations, is used to address the effect of the weld thermal cycle across the joint. Overall, this material possesses excellent weldability, with the joints possessing good mechanical behavior. The first successful welding of a non-equiatomic eutectic AlCoCrFeNi2.1 is obtained using gas tungsten arc welding. Again, multiscale characterization enabled to determine the role of the weld thermal cycle across the welded joint. The volume fraction of the dual-phase structure, as well as those of the strengthening nanoscale precipitates was seen to be correlated to the distance to the heat source. The as-welded material possessed a combination of good strength and ductility, showcasing the good weldability of this material. Finally, gas tungsten arc welding of a metastable Fe42Mn28Co10Cr15Si5 was also successfully performed. Electron microscopy, aided by high energy synchrotron X-ray diffraction, were combined with thermodynamic calculation to understand how the existing phases varied across the welded joint. Similarly, to the other welded joints, the metastable alloy was also seen to present good weldability, with the observed mechanical behavior of the joints enabling its use for structural applications in different industries. The results obtained in this work show that arc-based welding processes are viable for welding of these novel materials and the resulting properties enable to consider the obtained joints for structural-oriented applications.As ligas de alta entropia são novos materiais de engenharia que possuem propriedades extraordinárias. Presentemente, estudos sobre a soldabilidade desta nova classe de materiais são ainda escassos. Por isso, o presente trabalho visa colmatar parte desta falta de informação focando na soldadura por arco eléctrico das ligas de alta entropia CoCrFeMnNi (sistema Co-Cr-Fe-Mn-Ni), liga eutéctica não-equiatómica AlCoCrFeNi2.1 (sistema Al-Co-Cr-Fe-Ni) e ainda liga metaestável Fe42Mn28Co10Cr15Si5 (sistema Fe-Mn-Co-Cr-Si). Para a liga de CoCrFeMnNi, soldadura por Metal Inert Gas (MIG) utilizando dois materiais de adição distintos, aços inoxidáveis 308 e 410, foi realizada com sucesso. Caracterização multiescala, através da utilização de microscopia electrónica acoplada com análise das propriedades mecânicas e simulações termodinâmicas, é utilizada para avaliar o efeito do ciclo térmico ao longo da junta soldada. De um modo geral, esta liga possui excelente soldabilidade, com as juntas a apresentam boa resposta mecânica. Soldadura da liga não-equiatómica AlCoCrFeNi2.1 é reportada pela primeira vez utilizando soldadura Tungsten Inert Gas (TIG). Novamente, caracterização multiescala permite determinar o impacto do ciclo térmico ao longo das juntas soldadas. A fração volúmica da estrutura eutéctica, assim como os precipitados nanométricos, está directamente relacionada com a distância ao centro do cordão de soldadura. O material como soldado possui um boa combinação de resistência mecânica e ductilidade, evidenciando a boa soldabilidade do material. Finalmente, soldadura TIG da liga metaestável Fe42Mn28Co10Cr15Si5 foi igualmente realizada com sucesso. Microscopia electrónica, suportada por difração de raios-X com radiação de sincrotrão, são combinadas com simulações termodinâmicas para compreender como as fases existentes variam ao longo da junta soldada. De modo semelhante aos outros materiais estudados, a liga metaestável possui igualmente boa soldabilidade, com as propriedades mecânicas observadas a permitirem considerar as juntas soldadas para aplicações estruturais. Os resultados obtidos neste trabalho demonstram que processos de soldadura baseados no arco eléctrico são viáveis para estes novos materiais e que as propriedades resultantes permitem considerar as juntas soldadas para aplicações de índole estrutural.Oliveira, JoãoRUNShen, Jiajia2023-08-28T13:09:56Z2022-102022-10-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/156951enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:13:47Zoai:run.unl.pt:10362/156951Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:44:12.962429Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Welding of High Entropy Alloys
title Welding of High Entropy Alloys
spellingShingle Welding of High Entropy Alloys
Shen, Jiajia
Digital image correlation
Gas metal arc welding
Gas tungsten arc welding
High entropy alloys
Mechanical testing
Microstructure evolution
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
title_short Welding of High Entropy Alloys
title_full Welding of High Entropy Alloys
title_fullStr Welding of High Entropy Alloys
title_full_unstemmed Welding of High Entropy Alloys
title_sort Welding of High Entropy Alloys
author Shen, Jiajia
author_facet Shen, Jiajia
author_role author
dc.contributor.none.fl_str_mv Oliveira, João
RUN
dc.contributor.author.fl_str_mv Shen, Jiajia
dc.subject.por.fl_str_mv Digital image correlation
Gas metal arc welding
Gas tungsten arc welding
High entropy alloys
Mechanical testing
Microstructure evolution
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
topic Digital image correlation
Gas metal arc welding
Gas tungsten arc welding
High entropy alloys
Mechanical testing
Microstructure evolution
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
description High entropy alloys are novel engineering materials which possess extraordinary properties. Current weldability studies regarding this novel class of materials are scarce. Hence, the present work addresses this shortcoming by focusing on the use of arc-based welding processes for joining of single phase equiatomic CoCrFeMnNi (Co-Cr-Fe-Mn-Ni system), a dual phase non-equiatomic eutectic AlCoCrFeNi2.1 (Al-Co-Cr-Fe-Ni system) and a metastable Fe42Mn28Co10Cr15Si5 (Fe-Mn-Co-Cr-Si system) high entropy alloys. For the single phase CoCrFeMnNi, gas metal arc welding using 308 and 410 stainless steel fillers are used. Multiscale correlative microstructure characterization encompassing electron microscopy coupled with mechanical property analysis, alongside thermodynamic calculations, is used to address the effect of the weld thermal cycle across the joint. Overall, this material possesses excellent weldability, with the joints possessing good mechanical behavior. The first successful welding of a non-equiatomic eutectic AlCoCrFeNi2.1 is obtained using gas tungsten arc welding. Again, multiscale characterization enabled to determine the role of the weld thermal cycle across the welded joint. The volume fraction of the dual-phase structure, as well as those of the strengthening nanoscale precipitates was seen to be correlated to the distance to the heat source. The as-welded material possessed a combination of good strength and ductility, showcasing the good weldability of this material. Finally, gas tungsten arc welding of a metastable Fe42Mn28Co10Cr15Si5 was also successfully performed. Electron microscopy, aided by high energy synchrotron X-ray diffraction, were combined with thermodynamic calculation to understand how the existing phases varied across the welded joint. Similarly, to the other welded joints, the metastable alloy was also seen to present good weldability, with the observed mechanical behavior of the joints enabling its use for structural applications in different industries. The results obtained in this work show that arc-based welding processes are viable for welding of these novel materials and the resulting properties enable to consider the obtained joints for structural-oriented applications.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
2022-10-01T00:00:00Z
2023-08-28T13:09:56Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/156951
url http://hdl.handle.net/10362/156951
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596927644532736