Metaheuristic strategies for solving scheduling problems for gymnastics competitions

Bibliographic Details
Main Author: Nande, Inês Filipa da Silva Furtado
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/64279
Summary: Tese de mestrado, Ciência de Dados, 2023, Universidade de Lisboa, Faculdade de Ciências
id RCAP_bdc26d784435b1396a5b21cf74c52a8e
oai_identifier_str oai:repositorio.ulisboa.pt:10451/64279
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Metaheuristic strategies for solving scheduling problems for gymnastics competitionsOtimizaçãoHill ClimbingSimulated AnnealingAlgoritmo GenéticoMetaheurísticasTeses de mestrado - 2024Departamento de InformáticaTese de mestrado, Ciência de Dados, 2023, Universidade de Lisboa, Faculdade de CiênciasThe positioning of teams regarding acrobatic gymnastics can become a challenge considering the complexity of the sport and the restrictions needed for a fair and adequate championship. Competition schedules are organized by blocks that symbolize the interval in the calendar where a predefined set of teams with the same characteristics will act. The starting order defines the positioning of teams in each block. This thesis portrays the research, development, and application of an algorithm that generates an admissible solution for assigning teams in the starting order, explore the hypothesis of generating solutions with hard and soft constraints to provide an admissible solution. Initially, the problem was formalized through theoretical research. Posteriorly, interviews were carried out with judges, athletes, and championship organizers to determine the associated hard and soft constraints. These will define whether or not a starting order is admissible. Due to the type of problem and the complexity of the associated constraints, different types of metaheuristics were tested, specifically local search and evolutionary algorithms. The following methods were selected for implementation: Hill-Climbing (the baseline), Simulated Annealing, and Genetic Algorithm. These models underwent a testing phase in different types of competitions, and computational complexity was also analyzed. Solutions were explored and compared between strategies. Results show that local search methods can modulate different types of schedules in a reasonable amount of time, with the simulated annealing technique providing the best results.Falcão, André Osório e Cruz de Azerêdo, 1969-Repositório da Universidade de LisboaNande, Inês Filipa da Silva Furtado2024-04-15T16:43:52Z202420232024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/64279enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T15:14:30Zoai:repositorio.ulisboa.pt:10451/64279Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:37:43.990331Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Metaheuristic strategies for solving scheduling problems for gymnastics competitions
title Metaheuristic strategies for solving scheduling problems for gymnastics competitions
spellingShingle Metaheuristic strategies for solving scheduling problems for gymnastics competitions
Nande, Inês Filipa da Silva Furtado
Otimização
Hill Climbing
Simulated Annealing
Algoritmo Genético
Metaheurísticas
Teses de mestrado - 2024
Departamento de Informática
title_short Metaheuristic strategies for solving scheduling problems for gymnastics competitions
title_full Metaheuristic strategies for solving scheduling problems for gymnastics competitions
title_fullStr Metaheuristic strategies for solving scheduling problems for gymnastics competitions
title_full_unstemmed Metaheuristic strategies for solving scheduling problems for gymnastics competitions
title_sort Metaheuristic strategies for solving scheduling problems for gymnastics competitions
author Nande, Inês Filipa da Silva Furtado
author_facet Nande, Inês Filipa da Silva Furtado
author_role author
dc.contributor.none.fl_str_mv Falcão, André Osório e Cruz de Azerêdo, 1969-
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Nande, Inês Filipa da Silva Furtado
dc.subject.por.fl_str_mv Otimização
Hill Climbing
Simulated Annealing
Algoritmo Genético
Metaheurísticas
Teses de mestrado - 2024
Departamento de Informática
topic Otimização
Hill Climbing
Simulated Annealing
Algoritmo Genético
Metaheurísticas
Teses de mestrado - 2024
Departamento de Informática
description Tese de mestrado, Ciência de Dados, 2023, Universidade de Lisboa, Faculdade de Ciências
publishDate 2023
dc.date.none.fl_str_mv 2023
2024-04-15T16:43:52Z
2024
2024-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/64279
url http://hdl.handle.net/10451/64279
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601770349133824