Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow

Bibliographic Details
Main Author: Yang, Xiao-Jun
Publication Date: 2015
Other Authors: Machado, J. A. Tenreiro, Hristov, Jordan
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/6962
Summary: The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
id RCAP_bd1e42c2f9cafc0c81eb7cb069de8454
oai_identifier_str oai:recipp.ipp.pt:10400.22/6962
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal FlowConservation lawsBurgers’ equationTransport equationDiffusion equationLocal fractional derivativeThe local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.SpringerREPOSITÓRIO P.PORTOYang, Xiao-JunMachado, J. A. TenreiroHristov, Jordan2015-11-20T11:50:32Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/6962eng10.1007/s11071-015-2085-2info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:33:14Zoai:recipp.ipp.pt:10400.22/6962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:00:21.311476Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
title Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
spellingShingle Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
Yang, Xiao-Jun
Conservation laws
Burgers’ equation
Transport equation
Diffusion equation
Local fractional derivative
title_short Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
title_full Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
title_fullStr Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
title_full_unstemmed Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
title_sort Nonlinear Dynamics for Local Fractional Burgers Equation Arising in Fractal Flow
author Yang, Xiao-Jun
author_facet Yang, Xiao-Jun
Machado, J. A. Tenreiro
Hristov, Jordan
author_role author
author2 Machado, J. A. Tenreiro
Hristov, Jordan
author2_role author
author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Yang, Xiao-Jun
Machado, J. A. Tenreiro
Hristov, Jordan
dc.subject.por.fl_str_mv Conservation laws
Burgers’ equation
Transport equation
Diffusion equation
Local fractional derivative
topic Conservation laws
Burgers’ equation
Transport equation
Diffusion equation
Local fractional derivative
description The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-20T11:50:32Z
2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/6962
url http://hdl.handle.net/10400.22/6962
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/s11071-015-2085-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600793394020352