FPGA implementation of a multi-population PBIL algorithm
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10198/13028 |
Resumo: | Evolutionary-based algorithms play an important role in finding solutions to many problems that are not solved by classical methods, and particularly so for those cases where solutions lie within extreme non-convex multidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simultaneous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such robustness comes with high computational overhead, though custom digital processor use may reduce this cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the population-based incremental learning method. We show that the structure of this algorithm is well suited to implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations. |
| id |
RCAP_bba92ee9c5ebd10d1c043dc523122ffd |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/13028 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
FPGA implementation of a multi-population PBIL algorithmPopulation based incremental learningMulti-population evolutionary algorithmsFPGAEvolutionary-based algorithms play an important role in finding solutions to many problems that are not solved by classical methods, and particularly so for those cases where solutions lie within extreme non-convex multidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simultaneous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such robustness comes with high computational overhead, though custom digital processor use may reduce this cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the population-based incremental learning method. We show that the structure of this algorithm is well suited to implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations.Biblioteca Digital do IPBCoelho, João PauloPinho, Tatiana M.Boaventura-Cunha, José2016-06-27T16:20:40Z20152015-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/13028engCoelho, J.P.; Pinho, T.; Boaventura-Cunha, J. (2015). FPGA implementation of a multi-population PBIL algorithm. In 7th International Joint Conference on Computational Intelligence (IJCCI 2015). Lisboa978-989-758-157-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:03:06Zoai:bibliotecadigital.ipb.pt:10198/13028Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:28:41.429019Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
FPGA implementation of a multi-population PBIL algorithm |
| title |
FPGA implementation of a multi-population PBIL algorithm |
| spellingShingle |
FPGA implementation of a multi-population PBIL algorithm Coelho, João Paulo Population based incremental learning Multi-population evolutionary algorithms FPGA |
| title_short |
FPGA implementation of a multi-population PBIL algorithm |
| title_full |
FPGA implementation of a multi-population PBIL algorithm |
| title_fullStr |
FPGA implementation of a multi-population PBIL algorithm |
| title_full_unstemmed |
FPGA implementation of a multi-population PBIL algorithm |
| title_sort |
FPGA implementation of a multi-population PBIL algorithm |
| author |
Coelho, João Paulo |
| author_facet |
Coelho, João Paulo Pinho, Tatiana M. Boaventura-Cunha, José |
| author_role |
author |
| author2 |
Pinho, Tatiana M. Boaventura-Cunha, José |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
| dc.contributor.author.fl_str_mv |
Coelho, João Paulo Pinho, Tatiana M. Boaventura-Cunha, José |
| dc.subject.por.fl_str_mv |
Population based incremental learning Multi-population evolutionary algorithms FPGA |
| topic |
Population based incremental learning Multi-population evolutionary algorithms FPGA |
| description |
Evolutionary-based algorithms play an important role in finding solutions to many problems that are not solved by classical methods, and particularly so for those cases where solutions lie within extreme non-convex multidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simultaneous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such robustness comes with high computational overhead, though custom digital processor use may reduce this cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the population-based incremental learning method. We show that the structure of this algorithm is well suited to implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2016-06-27T16:20:40Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/13028 |
| url |
http://hdl.handle.net/10198/13028 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Coelho, J.P.; Pinho, T.; Boaventura-Cunha, J. (2015). FPGA implementation of a multi-population PBIL algorithm. In 7th International Joint Conference on Computational Intelligence (IJCCI 2015). Lisboa 978-989-758-157-1 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833591944145534976 |