A Case Base View of Heart Failure Predisposition Risk
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/22222 https://doi.org/10.1007/978-3-319-56541-5_32 |
Summary: | Heart failure stands for an abnormality in cardiac structure or function which results in the incapability of the heart to deliver oxygen at an ideal rate. This is a worldwide problem of public health, characterized by high mortality, frequent hospitalization and reduced quality of life. Thus, this work will focus on the development of a decision support system to assess heart failure predisposing risk. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The proposed model classifies properly the patients exhibiting accuracy and sensitivity higher than 90%. |
id |
RCAP_badee5142974b5bade8ef372b87cac0f |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/22222 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A Case Base View of Heart Failure Predisposition RiskHeart FailureLogic ProgrammingCase-Based ReasoningKnowledge Representation and ReasoningDecision Support SystemsHeart failure stands for an abnormality in cardiac structure or function which results in the incapability of the heart to deliver oxygen at an ideal rate. This is a worldwide problem of public health, characterized by high mortality, frequent hospitalization and reduced quality of life. Thus, this work will focus on the development of a decision support system to assess heart failure predisposing risk. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The proposed model classifies properly the patients exhibiting accuracy and sensitivity higher than 90%.Springer International Publishing2018-02-14T14:47:28Z2018-02-142017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/22222http://hdl.handle.net/10174/22222https://doi.org/10.1007/978-3-319-56541-5_32engVicente, H., Martins, M.R., Duarte, M., Miguel, P., Grañeda, J., Caldeira, F., Vilhena, J., Neves, J. & Neves, J., A Case Base View of Heart Failure Predisposition Risk. Advances in Intelligent Systems and Computing, 571, 312–323, 2017.2194-5365 (electronic)2194-5357 (paper)http://link.springer.com/chapter/10.1007/978-3-319-56541-5_32Laboratório HERCULEShvicente@uevora.ptmrm@uevora.ptmargaridacorreiaduarte@hotmail.compatricia-alexandraa@hotmail.comgraneda1@sapo.ptfilomenacaldeira1@gmail.comjmvilhena@gmail.comjoaocpneves@gmail.comjneves@di.uminho.ptVicente, HenriqueMartins, M. RosárioDuarte, MargaridaMiguel, PatríciaGrañeda, José M.Caldeira, FilomenaVilhena, JoãoNeves, JoãoNeves, Joséinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:13:22Zoai:dspace.uevora.pt:10174/22222Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:14:54.681953Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A Case Base View of Heart Failure Predisposition Risk |
title |
A Case Base View of Heart Failure Predisposition Risk |
spellingShingle |
A Case Base View of Heart Failure Predisposition Risk Vicente, Henrique Heart Failure Logic Programming Case-Based Reasoning Knowledge Representation and Reasoning Decision Support Systems |
title_short |
A Case Base View of Heart Failure Predisposition Risk |
title_full |
A Case Base View of Heart Failure Predisposition Risk |
title_fullStr |
A Case Base View of Heart Failure Predisposition Risk |
title_full_unstemmed |
A Case Base View of Heart Failure Predisposition Risk |
title_sort |
A Case Base View of Heart Failure Predisposition Risk |
author |
Vicente, Henrique |
author_facet |
Vicente, Henrique Martins, M. Rosário Duarte, Margarida Miguel, Patrícia Grañeda, José M. Caldeira, Filomena Vilhena, João Neves, João Neves, José |
author_role |
author |
author2 |
Martins, M. Rosário Duarte, Margarida Miguel, Patrícia Grañeda, José M. Caldeira, Filomena Vilhena, João Neves, João Neves, José |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Vicente, Henrique Martins, M. Rosário Duarte, Margarida Miguel, Patrícia Grañeda, José M. Caldeira, Filomena Vilhena, João Neves, João Neves, José |
dc.subject.por.fl_str_mv |
Heart Failure Logic Programming Case-Based Reasoning Knowledge Representation and Reasoning Decision Support Systems |
topic |
Heart Failure Logic Programming Case-Based Reasoning Knowledge Representation and Reasoning Decision Support Systems |
description |
Heart failure stands for an abnormality in cardiac structure or function which results in the incapability of the heart to deliver oxygen at an ideal rate. This is a worldwide problem of public health, characterized by high mortality, frequent hospitalization and reduced quality of life. Thus, this work will focus on the development of a decision support system to assess heart failure predisposing risk. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The proposed model classifies properly the patients exhibiting accuracy and sensitivity higher than 90%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2018-02-14T14:47:28Z 2018-02-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/22222 http://hdl.handle.net/10174/22222 https://doi.org/10.1007/978-3-319-56541-5_32 |
url |
http://hdl.handle.net/10174/22222 https://doi.org/10.1007/978-3-319-56541-5_32 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Vicente, H., Martins, M.R., Duarte, M., Miguel, P., Grañeda, J., Caldeira, F., Vilhena, J., Neves, J. & Neves, J., A Case Base View of Heart Failure Predisposition Risk. Advances in Intelligent Systems and Computing, 571, 312–323, 2017. 2194-5365 (electronic) 2194-5357 (paper) http://link.springer.com/chapter/10.1007/978-3-319-56541-5_32 Laboratório HERCULES hvicente@uevora.pt mrm@uevora.pt margaridacorreiaduarte@hotmail.com patricia-alexandraa@hotmail.com graneda1@sapo.pt filomenacaldeira1@gmail.com jmvilhena@gmail.com joaocpneves@gmail.com jneves@di.uminho.pt |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer International Publishing |
publisher.none.fl_str_mv |
Springer International Publishing |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592661543485440 |