Biased random-key genetic algorithm with local search applied to the maximum diversity problem
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/1822/86364 |
Resumo: | The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computa tional time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a com prehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios. |
| id |
RCAP_ba12772e24f4a5d72f325d11ac569748 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86364 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Biased random-key genetic algorithm with local search applied to the maximum diversity problemBiological diversity conservationRandom-key genetic algorithmEvolutionary algorithmsComputational simulationsCiências Naturais::MatemáticasEducação de qualidadeThe maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computa tional time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a com prehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios.This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through grant 303192/2022-4 (R.O.), and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), from the Brazilian government; by FONDECYT, grant number 1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science and Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT - Research Centre of Mathematics of University of Minho, references UIDB/00013/2020, UIDP/00013/2020 (C.C.).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoSilva, GeizaLeite, AndréOspina, RaydonalLeiva, VíctorFigueroa-Zúñiga, JorgeCastro, Cecília2023-07-122023-07-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86364engSilva, G.; Leite, A.; Ospina, R.; Leiva, V.; Figueroa-Zúñiga, J.; Castro, C. Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem. Mathematics 2023, 11, 3072. https://doi.org/10.3390/math111430722227-739010.3390/math111430723072https://www.mdpi.com/2227-7390/11/14/3072info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:14:01Zoai:repositorium.sdum.uminho.pt:1822/86364Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:19:50.018349Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| title |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| spellingShingle |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem Silva, Geiza Biological diversity conservation Random-key genetic algorithm Evolutionary algorithms Computational simulations Ciências Naturais::Matemáticas Educação de qualidade |
| title_short |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| title_full |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| title_fullStr |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| title_full_unstemmed |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| title_sort |
Biased random-key genetic algorithm with local search applied to the maximum diversity problem |
| author |
Silva, Geiza |
| author_facet |
Silva, Geiza Leite, André Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
| author_role |
author |
| author2 |
Leite, André Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
| author2_role |
author author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Silva, Geiza Leite, André Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
| dc.subject.por.fl_str_mv |
Biological diversity conservation Random-key genetic algorithm Evolutionary algorithms Computational simulations Ciências Naturais::Matemáticas Educação de qualidade |
| topic |
Biological diversity conservation Random-key genetic algorithm Evolutionary algorithms Computational simulations Ciências Naturais::Matemáticas Educação de qualidade |
| description |
The maximum diversity problem (MDP) aims to select a subset with a predetermined number of elements from a given set, maximizing the diversity among them. This NP-hard problem requires efficient algorithms that can generate high-quality solutions within reasonable computa tional time. In this study, we propose a novel approach that combines the biased random-key genetic algorithm (BRKGA) with local search to tackle the MDP. Our computational study utilizes a com prehensive set of MDPLib instances, and demonstrates the superior average performance of our proposed algorithm compared to existing literature results. The MDP has a wide range of practical applications, including biology, ecology, and management. We provide future research directions for improving the algorithm’s performance and exploring its applicability in real-world scenarios. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-12 2023-07-12T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86364 |
| url |
https://hdl.handle.net/1822/86364 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Silva, G.; Leite, A.; Ospina, R.; Leiva, V.; Figueroa-Zúñiga, J.; Castro, C. Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem. Mathematics 2023, 11, 3072. https://doi.org/10.3390/math11143072 2227-7390 10.3390/math11143072 3072 https://www.mdpi.com/2227-7390/11/14/3072 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595881088090112 |